Chapter 17: Problem 9
Explain why cell potentials are not multiplied by the coefficients in the balanced redox equation. (Use the relationship between \(\Delta G\) and cell potential to do this.)
Chapter 17: Problem 9
Explain why cell potentials are not multiplied by the coefficients in the balanced redox equation. (Use the relationship between \(\Delta G\) and cell potential to do this.)
All the tools & learning materials you need for study success - in one app.
Get started for freeIn 1973 the wreckage of the Civil War ironclad USS Monitor was discovered near Cape Hatteras, North Carolina. [The Monitor and the CSS Virginia (formerly the USS Merrimack) fought the first battle between iron-armored ships.] In 1987 investigations were begun to see if the ship could be salvaged. It was reported in Time (June \(22,1987)\) that scientists were considering adding sacrificial anodes of zinc to the rapidly corroding metal hull of the Monitor. Describe how attaching zinc to the hull would protect the Monitor from further corrosion.
Consider the galvanic cell based on the following halfreactions: $$ \begin{array}{ll} \mathrm{Zn}^{2+}+2 \mathrm{e}^{-} \longrightarrow \mathrm{Zn} & \mathscr{E}^{\circ}=-0.76 \mathrm{V} \\ \mathrm{Fe}^{2+}+2 \mathrm{e}^{-} \longrightarrow \mathrm{Fe} & \mathscr{E}^{\circ}=-0.44 \mathrm{V} \end{array} $$ a. Determine the overall cell reaction and calculate \(\mathscr{E}_{\text {cell. }}\) b. Calculate \(\Delta G^{\circ}\) and \(K\) for the cell reaction at \(25^{\circ} \mathrm{C}\). c. Calculate \(\mathscr{C}_{\text {cell }}\) at \(25^{\circ} \mathrm{C}\) when \(\left[\mathrm{Zn}^{2+}\right]=0.10 \mathrm{M}\) and \(\left[\mathrm{Fe}^{2+}\right]=1.0 \times 10^{-5} \mathrm{M}\)
A zinc-copper battery is constructed as follows at \(25^{\circ} \mathrm{C}\) : $$ \mathrm{Zn}\left|\mathrm{Zn}^{2+}(0.10 M)\right|\left|\mathrm{Cu}^{2+}(2.50 M)\right| \mathrm{Cu} $$ The mass of each electrode is \(200 .\) g. a. Calculate the cell potential when this battery is first connected. b. Calculate the cell potential after 10.0 A of current has flowed for \(10.0 \mathrm{h}\). (Assume each half-cell contains \(1.00 \mathrm{L}\) of solution.) c. Calculate the mass of each electrode after \(10.0 \mathrm{h}\). d. How long can this battery deliver a current of 10.0 A before it goes dead?
The ultimate electron acceptor in the respiration process is molecular oxygen. Electron transfer through the respiratory chain takes place through a complex series of oxidationreduction reactions. Some of the electron transport steps use iron-containing proteins called cytochromes. All cytochromes transport electrons by converting the iron in the cytochromes from the +3 to the +2 oxidation state. Consider the following reduction potentials for three different cytochromes used in the transfer process of electrons to oxygen (the potentials have been corrected for \(\mathrm{pH}\) and for temperature): $$\begin{aligned} &\text { cytochrome } \mathrm{a}\left(\mathrm{Fe}^{3+}\right)+\mathrm{e}^{-} \longrightarrow \text { cytochrome } \mathrm{a}\left(\mathrm{Fe}^{2+}\right)\ &\mathscr{E}^{\circ}=0.385 \mathrm{V}\\\ &\text { cytochrome } \mathbf{b}\left(\mathrm{Fe}^{3+}\right)+\mathrm{e}^{-} \longrightarrow \text { cytochrome } \mathrm{b}\left(\mathrm{Fe}^{2+}\right)\ &\mathscr{E}^{\circ}=0.030 \mathrm{V}\\\ &\text { cytochrome } c\left(\mathrm{Fe}^{3+}\right)+\mathrm{e}^{-} \longrightarrow \text { cytochrome } \mathrm{c}\left(\mathrm{Fe}^{2+}\right)\ &\mathscr{E}^{\circ}=0.254 \mathrm{V} \end{aligned}$$ In the electron transfer series, electrons are transferred from one cytochrome to another. Using this information, determine the cytochrome order necessary for spontaneous transport of electrons from one cytochrome to another, which eventually will lead to electron transfer to \(\mathrm{O}_{2}\)
Sketch the galvanic cells based on the following half-reactions. Show the direction of electron flow, show the direction of ion migration through the salt bridge, and identify the cathode and anode. Give the overall balanced equation, and determine \(\mathscr{C}^{\circ}\) for the galvanic cells. Assume that all concentrations are \(1.0 M\) and that all partial pressures are 1.0 atm. a. \(\mathrm{H}_{2} \mathrm{O}_{2}+2 \mathrm{H}^{+}+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{H}_{2} \mathrm{O} \quad \mathscr{E}^{\circ}=1.78 \mathrm{V}\) \(\mathrm{O}_{2}+2 \mathrm{H}^{+}+2 \mathrm{e}^{-} \rightarrow \mathrm{H}_{2} \mathrm{O}_{2} \quad \quad \mathscr{E}^{\circ}=0.68 \mathrm{V}\) b. \(\mathrm{Mn}^{2+}+2 \mathrm{e}^{-} \rightarrow \mathrm{Mn} \quad \mathscr{E}^{\circ}=-1.18 \mathrm{V}\) \(\mathrm{Fe}^{3+}+3 \mathrm{e}^{-} \rightarrow \mathrm{Fe} \quad \mathscr{E}^{\circ}=-0.036 \mathrm{V}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.