Chapter 17: Problem 3
You want to "plate out" nickel metal from a nickel nitrate solution onto a piece of metal inserted into the solution. Should you use copper or zinc? Explain.
Chapter 17: Problem 3
You want to "plate out" nickel metal from a nickel nitrate solution onto a piece of metal inserted into the solution. Should you use copper or zinc? Explain.
All the tools & learning materials you need for study success - in one app.
Get started for freeHydrazine is somewhat toxic. Use the half-reactions shown below to explain why household bleach (a highly alkaline solution of sodium hypochlorite) should not be mixed with household ammonia or glass cleansers that contain ammonia. $$\begin{array}{c} \mathrm{ClO}^{-}+\mathrm{H}_{2} \mathrm{O}+2 \mathrm{e}^{-} \longrightarrow 2 \mathrm{OH}^{-}+\mathrm{Cl}^{-} \quad \quad \quad \mathscr{E}^{\circ}=0.90 \mathrm{V} \\ \mathrm{N}_{2} \mathrm{H}_{4}+2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{e}^{-} \longrightarrow 2 \mathrm{NH}_{3}+2 \mathrm{OH}^{-} \quad \mathscr{E}^{\circ}=-0.10 \mathrm{V} \end{array}$$
Consider the following half-reactions: \(\begin{aligned} \mathrm{Pt}^{2+}+2 \mathrm{e}^{-} \longrightarrow \mathrm{Pt} & & & \mathscr{E}^{\circ}=1.188 \mathrm{V} \\ \mathrm{PtCl}_{4}^{2-}+2 \mathrm{e}^{-} \longrightarrow & \mathrm{Pt}+4 \mathrm{Cl}^{-} & & \mathscr{E}^{\circ}=0.755 \mathrm{V} \\ \mathrm{NO}_{3}^{-}+4 \mathrm{H}^{+}+3 \mathrm{e}^{-} & \longrightarrow \mathrm{NO}+2 \mathrm{H}_{2} \mathrm{O} & & \mathscr{E}^{\circ}=0.96 \mathrm{V} \end{aligned}\) Explain why platinum metal will dissolve in aqua regia (a mixture of hydrochloric and nitric acids) but not in either concentrated nitric or concentrated hydrochloric acid individually.
Consider a concentration cell that has both electrodes made of some metal M. Solution \(A\) in one compartment of the cell contains \(1.0 \mathrm{M} \mathrm{M}^{2+}\). Solution \(\mathrm{B}\) in the other cell compartment has a volume of 1.00 L. At the beginning of the experiment 0.0100 mole of \(\mathrm{M}\left(\mathrm{NO}_{3}\right)_{2}\) and 0.0100 mole of \(\mathrm{Na}_{2} \mathrm{SO}_{4}\) are dissolved in solution \(\mathrm{B}\) (ignore volume changes), where the reaction $$ \mathbf{M}^{2+}(a q)+\mathbf{S O}_{4}^{2-}(a q) \rightleftharpoons \mathrm{MSO}_{4}(s) $$ occurs. For this reaction equilibrium is rapidly established, whereupon the cell potential is found to be 0.44 V at 25 \(^{\circ}\) C. Assume that the process $$ \mathrm{M}^{2+}+2 \mathrm{e}^{-} \longrightarrow \mathrm{M} $$ has a standard reduction potential of \(-0.31 \mathrm{V}\) and that no other redox process occurs in the cell. Calculate the value of \(K_{\mathrm{sp}}\) for \(\mathrm{MSO}_{4}(s)\) at \(25^{\circ} \mathrm{C}\)
The overall reaction in the lead storage battery is $$ \begin{array}{r} \mathrm{Pb}(s)+\mathrm{PbO}_{2}(s)+2 \mathrm{H}^{+}(a q)+2 \mathrm{HSO}_{4}^{-}(a q) \longrightarrow \\ 2 \mathrm{PbSO}_{4}(s)+2 \mathrm{H}_{2} \mathrm{O}(l) \end{array} $$ Calculate \(\mathscr{E}\) at \(25^{\circ} \mathrm{C}\) for this battery when \(\left[\mathrm{H}_{2} \mathrm{SO}_{4}\right]=4.5 \mathrm{M}\) that is, \(\left[\mathrm{H}^{+}\right]=\left[\mathrm{HSO}_{4}^{-}\right]=4.5 \mathrm{M} .\) At \(25^{\circ} \mathrm{C}, 8^{\circ}=2.04 \mathrm{V}\) for the lead storage battery.
Consider only the species (at standard conditions) $$ \mathrm{Br}^{-}, \quad \mathrm{Br}_{2}, \quad \mathrm{H}^{+}, \quad \mathrm{H}_{2}, \quad \mathrm{La}^{3+}, \quad \mathrm{Ca}, \quad \mathrm{Cd} $$ in answering the following questions. Give reasons for your answers. a. Which is the strongest oxidizing agent? b. Which is the strongest reducing agent? c. Which species can be oxidized by \(\mathrm{MnO}_{4}^{-}\) in acid? d. Which species can be reduced by \(\mathrm{Zn}(s) ?\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.