Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Balance the following oxidation-reduction reactions that occur in acidic solution using the half-reaction method. a. \(\mathrm{I}^{-}(a q)+\mathrm{ClO}^{-}(a q) \rightarrow \mathrm{I}_{3}^{-}(a q)+\mathrm{Cl}^{-}(a q)\) b. \(\mathrm{As}_{2} \mathrm{O}_{3}(s)+\mathrm{NO}_{3}^{-}(a q) \rightarrow \mathrm{H}_{3} \mathrm{AsO}_{4}(a q)+\mathrm{NO}(g)\) c. \(\mathrm{Br}^{-}(a q)+\mathrm{MnO}_{4}^{-}(a q) \rightarrow \mathrm{Br}_{2}(l)+\mathrm{Mn}^{2+}(a q)\) d. \(\mathrm{CH}_{3} \mathrm{OH}(a q)+\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}(a q) \rightarrow \mathrm{CH}_{2} \mathrm{O}(a q)+\mathrm{Cr}^{3+}(a q)\)

Short Answer

Expert verified
The balanced equations for the reactions are: a. \(2\mathrm{I}^{-}(a q) + \mathrm{ClO}^{-}(a q) + 2\mathrm{H}^{+}(a q) \rightarrow \mathrm{I}_{3}^{-}(a q) + \mathrm{Cl}^{-}(a q) + \mathrm{H}_{2}\mathrm{O}(l)\) b. \(\mathrm{As}_{2} \mathrm{O}_{3}(s) + 12\mathrm{H}^{+}(a q) + 2\mathrm{OH}^{-}(a q) + 2\mathrm{NO}_{3}^{-}(a q) \rightarrow 2\mathrm{H}_{3} \mathrm{AsO}_{4}(a q) + 2\mathrm{NO}(g) + 4\mathrm{H}_{2}\mathrm{O}(l)\) c. \(10\mathrm{Br}^{-}(a q) + 2\mathrm{MnO}_{4}^{-}(a q) + 16\mathrm{H}^{+}(a q) \rightarrow 5\mathrm{Br}_{2}(l) + 2\mathrm{Mn}^{2+}(a q) + 8\mathrm{H}_{2}\mathrm{O}(l)\) d. \(3\mathrm{CH}_{3} \mathrm{OH}(a q) + \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}(a q) + 14\mathrm{H}^{+}(a q) \rightarrow 3\mathrm{CH}_{2} \mathrm{O}(a q) + 2\mathrm{Cr}^{3+}(a q) + 7\mathrm{H}_{2}\mathrm{O}(l)\)

Step by step solution

01

a. Balancing I- + ClO- → I3- + Cl-

Step 1: Split the reaction into two half-reactions Oxidation half-reaction: \(\mathrm{I}^{-} \rightarrow \mathrm{I}_{3}^{-}\) Reduction half-reaction: \(\mathrm{ClO}^{-} \rightarrow \mathrm{Cl}^{-}\) Step 2: Balance atoms and charges in each half-reaction Oxidation: Add 2 I- to the left side and 2e- to the right side Balanced oxidation half-reaction: \(2\mathrm{I}^{-} \rightarrow \mathrm{I}_{3}^{-} + 2e^{-}\) Reduction: Add H2O to the left side and 2H+ + 2e- to the right side Balanced reduction half-reaction: \(\mathrm{ClO}^{-} + 2\mathrm{H}^{+} + 2e^{-} \rightarrow \mathrm{Cl}^{-} + \mathrm{H}_{2}\mathrm{O}\) Step 3: Combine the balanced half-reactions \(2\mathrm{I}^{-} + \mathrm{ClO}^{-} + 2\mathrm{H}^{+} \rightarrow \mathrm{I}_{3}^{-} + \mathrm{Cl}^{-} + \mathrm{H}_{2}\mathrm{O}\) The balanced equation for reaction a is: \(2\mathrm{I}^{-}(a q) + \mathrm{ClO}^{-}(a q) + 2\mathrm{H}^{+}(a q) \rightarrow \mathrm{I}_{3}^{-}(a q) + \mathrm{Cl}^{-}(a q) + \mathrm{H}_{2}\mathrm{O}(l)\)
02

b. Balancing As2O3 + NO3- → H3AsO4 + NO

Step 1: Split the reaction into two half-reactions Oxidation half-reaction: \(\mathrm{As}_{2} \mathrm{O}_{3} \rightarrow \mathrm{H}_{3} \mathrm{AsO}_{4}\) Reduction half-reaction: \(\mathrm{NO}_{3}^{-} \rightarrow \mathrm{NO}\) Step 2: Balance atoms and charges in each half-reaction Oxidation: Add 6H+ to the right side and 2 OH- to the left side Balanced oxidation half-reaction: \(\mathrm{As}_{2} \mathrm{O}_{3} + 2\mathrm{OH}^{-} \rightarrow 2\mathrm{H}_{3} \mathrm{AsO}_{4} + 4e^{-}\) Reduction: Add 2H2O to the right side and 6H+ + 6e- to the left side Balanced reduction half-reaction: \(2(\mathrm{NO}_{3}^{-} + 3\mathrm{H}^{+}) \rightarrow 2\mathrm{NO} + 6\mathrm{H}_{2}\mathrm{O}\) Step 3: Combine the balanced half-reactions (multiply reduction half-reaction by 2) \(\mathrm{As}_{2} \mathrm{O}_{3} + 2\mathrm{OH}^{-} + 2(\mathrm{NO}_{3}^{-} + 3\mathrm{H}^{+}) \rightarrow 2\mathrm{H}_{3} \mathrm{AsO}_{4} + 2\mathrm{NO} + 6\mathrm{H}_{2}\mathrm{O}\) The balanced equation for reaction b is: \(\mathrm{As}_{2} \mathrm{O}_{3}(s) + 12\mathrm{H}^{+}(a q) + 2\mathrm{OH}^{-}(a q) + 2\mathrm{NO}_{3}^{-}(a q) \rightarrow 2\mathrm{H}_{3} \mathrm{AsO}_{4}(a q) + 2\mathrm{NO}(g) + 4\mathrm{H}_{2}\mathrm{O}(l)\)
03

c. Balancing Br- + MnO4- → Br2 + Mn2+

Step 1: Split the reaction into two half-reactions Oxidation half-reaction: \(\mathrm{Br}^{-} \rightarrow \mathrm{Br}_{2}\) Reduction half-reaction: \(\mathrm{MnO}_{4}^{-} \rightarrow \mathrm{Mn}^{2+}\) Step 2: Balance atoms and charges in each half-reaction Oxidation: Add 2 Br- to the left side and 2e- to the right side Balanced oxidation half-reaction: \(2\mathrm{Br}^{-} \rightarrow \mathrm{Br}_{2} + 2e^{-}\) Reduction: Add 4H2O to the left side and 8H+ + 5e- to the right side Balanced reduction half-reaction: \(\mathrm{MnO}_{4}^{-} + 8\mathrm{H}^{+} + 5e^{-} \rightarrow \mathrm{Mn}^{2+} + 4\mathrm{H}_{2}\mathrm{O}\) Step 3: Combine the balanced half-reactions (multiply oxidation half-reaction by 5, reduction half-reaction by 2) \(10\mathrm{Br}^{-} + 2\mathrm{MnO}_{4}^{-} + 16\mathrm{H}^{+} \rightarrow 5\mathrm{Br}_{2} + 2\mathrm{Mn}^{2+} + 8\mathrm{H}_{2}\mathrm{O}\) The balanced equation for reaction c is: \(10\mathrm{Br}^{-}(a q) + 2\mathrm{MnO}_{4}^{-}(a q) + 16\mathrm{H}^{+}(a q) \rightarrow 5\mathrm{Br}_{2}(l) + 2\mathrm{Mn}^{2+}(a q) + 8\mathrm{H}_{2}\mathrm{O}(l)\)
04

d. Balancing CH3OH + Cr2O72- → CH2O + Cr3+

Step 1: Split the reaction into two half-reactions Oxidation half-reaction: \(\mathrm{CH}_{3} \mathrm{OH} \rightarrow \mathrm{CH}_{2} \mathrm{O}\) Reduction half-reaction: \(\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-} \rightarrow \mathrm{Cr}^{3+}\) Step 2: Balance atoms and charges in each half-reaction Oxidation: Add H+ to the right side and 2e- to the left side Balanced oxidation half-reaction: \(\mathrm{CH}_{3} \mathrm{OH} + 2e^{-} \rightarrow \mathrm{CH}_{2} \mathrm{O} + \mathrm{H}^{+}\) Reduction: Add 7H2O to the left side and 14H+ + 6e- to the right side Balanced reduction half-reaction: \(\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-} + 14\mathrm{H}^{+} + 6e^{-} \rightarrow 2\mathrm{Cr}^{3+} + 7\mathrm{H}_{2}\mathrm{O}\) Step 3: Combine the balanced half-reactions (multiply oxidation half-reaction by 3, reduction half-reaction by 1) \(3\mathrm{CH}_{3} \mathrm{OH} + 6e^{-} + \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-} + 14\mathrm{H}^{+} \rightarrow 3(\mathrm{CH}_{2} \mathrm{O} + \mathrm{H}^{+}) + 2\mathrm{Cr}^{3+} + 7\mathrm{H}_{2}\mathrm{O}\) The balanced equation for reaction d is: \(3\mathrm{CH}_{3} \mathrm{OH}(a q) + \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}(a q) + 14\mathrm{H}^{+}(a q) \rightarrow 3\mathrm{CH}_{2} \mathrm{O}(a q) + 2\mathrm{Cr}^{3+}(a q) + 7\mathrm{H}_{2}\mathrm{O}(l)\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Three electrochemical cells were connected in series so that the same quantity of electrical current passes through all three cells. In the first cell, 1.15 g chromium metal was deposited from a chromium(III) nitrate solution. In the second cell, 3.15 g osmium was deposited from a solution made of \(\mathrm{Os}^{n+}\) and nitrate ions. What is the name of the salt? In the third cell, the electrical charge passed through a solution containing \(\mathrm{X}^{2+}\) ions caused deposition of \(2.11 \mathrm{g}\) metallic \(\mathrm{X}\). What is the electron configuration of X?

An aqueous solution of an unknown salt of ruthenium is electrolyzed by a current of 2.50 A passing for 50.0 min. If 2.618 g Ru is produced at the cathode, what is the charge on the ruthenium ions in solution?

Give the balanced cell equation and determine \(\mathscr{E}^{\circ}\) for the galvanic cells based on the following half-reactions. Standard reduction potentials are found in Table \(17-1\) a. \(\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+14 \mathrm{H}^{+}+6 \mathrm{e}^{-} \rightarrow 2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O}\) \(\mathrm{H}_{2} \mathrm{O}_{2}+2 \mathrm{H}^{+}+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}\) b. \(2 \mathrm{H}^{+}+2 \mathrm{e}^{-} \rightarrow \mathrm{H}_{2}\) \(\mathrm{Al}^{3+}+3 \mathrm{e}^{-} \rightarrow \mathrm{Al}\)

Which of the following statements concerning corrosion is(are) true? For the false statements, correct them. a. Corrosion is an example of an electrolytic process. b. Corrosion of steel involves the reduction of iron coupled with the oxidation of oxygen. c. Steel rusts more easily in the dry (arid) Southwest states than in the humid Midwest states. d. Salting roads in the winter has the added benefit of hindering the corrosion of steel. e. The key to cathodic protection is to connect via a wire a metal more easily oxidized than iron to the steel surface to be protected.

An electrochemical cell consists of a nickel metal electrode immersed in a solution with \(\left[\mathrm{Ni}^{2+}\right]=1.0 \mathrm{M}\) separated by a porous disk from an aluminum metal electrode. a. What is the potential of this cell at \(25^{\circ} \mathrm{C}\) if the aluminum electrode is placed in a solution in which \(\left[\mathrm{Al}^{3+}\right]=7.2 \times\) \(10^{-3} M ?\) b. When the aluminum electrode is placed in a certain solution in which \(\left[\mathrm{Al}^{3+}\right]\) is unknown, the measured cell potential at \(25^{\circ} \mathrm{C}\) is \(1.62 \mathrm{V}\). Calculate \(\left[\mathrm{Al}^{3+}\right]\) in the unknown solution. (Assume Al is oxidized.)

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free