Chapter 17: Problem 25
When jump-starting a car with a dead battery, the ground jumper should be attached to a remote part of the engine block. Why?
Chapter 17: Problem 25
When jump-starting a car with a dead battery, the ground jumper should be attached to a remote part of the engine block. Why?
All the tools & learning materials you need for study success - in one app.
Get started for freeA galvanic cell is based on the following half-reactions: $$ \begin{array}{ll} \mathrm{Fe}^{2+}+2 \mathrm{e}^{-} \longrightarrow \mathrm{Fe}(s) & \mathscr{E}^{\circ}=-0.440 \mathrm{V} \\ 2 \mathrm{H}^{+}+2 \mathrm{e}^{-} \longrightarrow \mathrm{H}_{2}(g) & \mathscr{E}^{\circ}=0.000 \mathrm{V} \end{array} $$ where the iron compartment contains an iron electrode and \(\left[\mathrm{Fe}^{2+}\right]=1.00 \times 10^{-3} \mathrm{M}\) and the hydrogen compartment contains a platinum electrode, \(P_{\mathrm{H}_{2}}=1.00\) atm, and a weak acid, HA, at an initial concentration of \(1.00 \mathrm{M}\). If the observed cell potential is \(0.333 \mathrm{V}\) at \(25^{\circ} \mathrm{C},\) calculate the \(K_{\mathrm{a}}\) value for the weak acid HA.
Consider the cell described below: $$ \mathrm{Al}\left|\mathrm{Al}^{3+}(1.00 M)\right|\left|\mathrm{Pb}^{2+}(1.00 M)\right| \mathrm{Pb} $$ Calculate the cell potential after the reaction has operated long enough for the \(\left[\mathrm{Al}^{3+}\right]\) to have changed by \(0.60 \mathrm{mol} / \mathrm{L}\). (Assume \(\left.T=25^{\circ} \mathrm{C} .\right)\)
Calculate \(\mathscr{E}^{\circ}\) values for the following cells. Which reactions are spontaneous as written (under standard conditions)? Balance the equations. Standard reduction potentials are found in Table \(17-1\) a. \(\mathrm{MnO}_{4}^{-}(a q)+\mathrm{I}^{-}(a q) \longrightarrow \mathrm{I}_{2}(a q)+\mathrm{Mn}^{2+}(a q)\) b. \(\mathrm{MnO}_{4}^{-}(a q)+\mathrm{F}^{-}(a q) \longrightarrow \mathrm{F}_{2}(g)+\mathrm{Mn}^{2+}(a q)\)
An experimental fuel cell has been designed that uses carbon monoxide as fuel. The overall reaction is $$ 2 \mathrm{CO}(g)+\mathrm{O}_{2}(g) \longrightarrow 2 \mathrm{CO}_{2}(g) $$ The two half-cell reactions are $$ \begin{array}{c} \mathrm{CO}+\mathrm{O}^{2-} \longrightarrow \mathrm{CO}_{2}+2 \mathrm{e}^{-} \\\ \mathrm{O}_{2}+4 \mathrm{e}^{-} \longrightarrow 2 \mathrm{O}^{2-} \end{array} $$ The two half-reactions are carried out in separate compartments connected with a solid mixture of \(\mathrm{CeO}_{2}\) and \(\mathrm{Gd}_{2} \mathrm{O}_{3}\). \(\mathrm{Ox}\) ide ions can move through this solid at high temperatures (about \(800^{\circ} \mathrm{C}\) ). \(\Delta G\) for the overall reaction at \(800^{\circ} \mathrm{C}\) under certain concentration conditions is -380 kJ. Calculate the cell potential for this fuel cell at the same temperature and concentration conditions.
An aqueous solution of \(\mathrm{PdCl}_{2}\) is electrolyzed for 48.6 seconds, and during this time 0.1064 g of Pd is deposited on the cathode. What is the average current used in the electrolysis?
What do you think about this solution?
We value your feedback to improve our textbook solutions.