Chapter 17: Problem 13
If the cell potential is proportional to work and the standard reduction potential for the hydrogen ion is zero, does this mean that the reduction of the hydrogen ion requires no work?
Chapter 17: Problem 13
If the cell potential is proportional to work and the standard reduction potential for the hydrogen ion is zero, does this mean that the reduction of the hydrogen ion requires no work?
All the tools & learning materials you need for study success - in one app.
Get started for freeAssign oxidation numbers to all the atoms in each of the following: a. \(\mathrm{HNO}_{3}\) b. \(\mathrm{CuCl}_{2}\) c. \(\mathrm{O}_{2}\) d. \(\mathrm{H}_{2} \mathrm{O}_{2}\) e. \(C_{6} H_{12} O_{6}\) f .\(\mathrm {Ag} \) g. \(\mathrm{PbSO}_{4}\) h. \(\mathrm{PbO}_{2}\) i. \(\quad \mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}\) j . \(\mathrm{CO}_{2}\) k. \(\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Ce}\left(\mathrm{SO}_{4}\right)_{3}\) 1\. \(\mathrm{Cr}_{2} \mathrm{O}_{3}\)
An electrochemical cell consists of a nickel metal electrode immersed in a solution with \(\left[\mathrm{Ni}^{2+}\right]=1.0 \mathrm{M}\) separated by a porous disk from an aluminum metal electrode. a. What is the potential of this cell at \(25^{\circ} \mathrm{C}\) if the aluminum electrode is placed in a solution in which \(\left[\mathrm{Al}^{3+}\right]=7.2 \times\) \(10^{-3} M ?\) b. When the aluminum electrode is placed in a certain solution in which \(\left[\mathrm{Al}^{3+}\right]\) is unknown, the measured cell potential at \(25^{\circ} \mathrm{C}\) is \(1.62 \mathrm{V}\). Calculate \(\left[\mathrm{Al}^{3+}\right]\) in the unknown solution. (Assume Al is oxidized.)
A galvanic cell is based on the following half-reactions: $$\begin{array}{ll} \mathrm{Cu}^{2+}(a q)+2 \mathrm{e}^{-} \longrightarrow \mathrm{Cu}(s) & \mathscr{E}^{\circ}=0.34 \mathrm{V} \\ \mathrm{V}^{2+}(a q)+2 \mathrm{e}^{-} \longrightarrow \mathrm{V}(s) & \mathscr{E}^{\circ}=-1.20 \mathrm{V} \end{array}$$ In this cell, the copper compartment contains a copper electrode and \(\left[\mathrm{Cu}^{2+}\right]=1.00 \mathrm{M},\) and the vanadium compartment contains a vanadium electrode and \(V^{2+}\) at an unknown concentration. The compartment containing the vanadium \((1.00 \mathrm{L}\) of solution) was titrated with \(0.0800 M \space \mathrm{H}_{2} \mathrm{EDTA}^{2-},\) resulting in the reaction $$\mathrm{H}_{2} \mathrm{EDTA}^{2-}(a q)+\mathrm{V}^{2+}(a q) \rightleftharpoons \mathrm{VEDTA}^{2-}(a q)+2 \mathrm{H}^{+}(a q) \space \mathrm{K=?}$$ The potential of the cell was monitored to determine the stoichiometric point for the process, which occurred at a volume of \(500.0 \mathrm{mL} \space \mathrm{H}_{2} \mathrm{EDTA}^{2-}\) solution added. At the stoichiometric point, \(\mathscr{E}_{\text {cell }}\) was observed to be \(1.98 \mathrm{V}\). The solution was buffered at a pH of \(10.00 .\) a. Calculate \(\mathscr{E}_{\text {cell }}\) before the titration was carried out. b. Calculate the value of the equilibrium constant, \(K,\) for the titration reaction. c. Calculate \(\mathscr{E}_{\text {cell }}\) at the halfway point in the titration.
A disproportionation reaction involves a substance that acts as both an oxidizing and a reducing agent, producing higher and lower oxidation states of the same element in the products. Which of the following disproportionation reactions are spontaneous under standard conditions? Calculate \(\Delta G^{\circ}\) and \(K\) at \(25^{\circ} \mathrm{C}\) for those reactions that are spontaneous under standard conditions. a. \(2 \mathrm{Cu}^{+}(a q) \rightarrow \mathrm{Cu}^{2+}(a q)+\mathrm{Cu}(s)\) b. \(3 \mathrm{Fe}^{2+}(a q) \rightarrow 2 \mathrm{Fe}^{3+}(a q)+\mathrm{Fe}(s)\) c. \(\mathrm{HClO}_{2}(a q) \rightarrow \mathrm{ClO}_{3}^{-}(a q)+\mathrm{HClO}(a q) \quad\) (unbalanced) Use the half-reactions: \(\mathrm{ClO}_{3}^{-}+3 \mathrm{H}^{+}+2 \mathrm{e}^{-} \longrightarrow \mathrm{HClO}_{2}+\mathrm{H}_{2} \mathrm{O} \quad \mathscr{E}^{\circ}=1.21 \mathrm{V}\) \(\mathrm{HClO}_{2}+2 \mathrm{H}^{+}+2 \mathrm{e}^{-} \longrightarrow \mathrm{HClO}+\mathrm{H}_{2} \mathrm{O} \quad \mathscr{E}^{\circ}=1.65 \mathrm{V}\)
Consider the galvanic cell based on the following halfreactions: $$ \begin{array}{ll} \mathrm{Zn}^{2+}+2 \mathrm{e}^{-} \longrightarrow \mathrm{Zn} & \mathscr{E}^{\circ}=-0.76 \mathrm{V} \\ \mathrm{Fe}^{2+}+2 \mathrm{e}^{-} \longrightarrow \mathrm{Fe} & \mathscr{E}^{\circ}=-0.44 \mathrm{V} \end{array} $$ a. Determine the overall cell reaction and calculate \(\mathscr{E}_{\text {cell. }}\) b. Calculate \(\Delta G^{\circ}\) and \(K\) for the cell reaction at \(25^{\circ} \mathrm{C}\). c. Calculate \(\mathscr{C}_{\text {cell }}\) at \(25^{\circ} \mathrm{C}\) when \(\left[\mathrm{Zn}^{2+}\right]=0.10 \mathrm{M}\) and \(\left[\mathrm{Fe}^{2+}\right]=1.0 \times 10^{-5} \mathrm{M}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.