Chapter 17: Problem 121
When aluminum foil is placed in hydrochloric acid, nothing happens for the first 30 seconds or so. This is followed by vigorous bubbling and the eventual disappearance of the foil. Explain these observations.
Chapter 17: Problem 121
When aluminum foil is placed in hydrochloric acid, nothing happens for the first 30 seconds or so. This is followed by vigorous bubbling and the eventual disappearance of the foil. Explain these observations.
All the tools & learning materials you need for study success - in one app.
Get started for freeA chemist wishes to determine the concentration of \(\mathrm{CrO}_{4}^{2-}\) electrochemically. A cell is constructed consisting of a saturated calomel electrode (SCE; see Exercise 115 ) and a silver wire coated with \(\mathrm{Ag}_{2} \mathrm{CrO}_{4} .\) The \(8^{\circ}\) value for the following half-reaction is \(0.446 \mathrm{V}\) relative to the standard hydrogen electrode: $$\mathrm{Ag}_{2} \mathrm{CrO}_{4}+2 \mathrm{e}^{-} \longrightarrow 2 \mathrm{Ag}+\mathrm{CrO}_{4}^{2-}$$ a. Calculate \(\mathscr{C}_{\text {cell }}\) and \(\Delta G\) at \(25^{\circ} \mathrm{C}\) for the cell reaction when \(\left[\mathrm{CrO}_{4}^{2-}\right]=1.00 \mathrm{mol} / \mathrm{L}\) b. Write the Nernst equation for the cell. Assume that the SCE concentrations are constant. c. If the coated silver wire is placed in a solution (at \(25^{\circ} \mathrm{C}\) ) in which \(\left[\mathrm{CrO}_{4}^{2-}\right]=1.00 \times 10^{-5} \mathrm{M},\) what is the expected cell potential? d. The measured cell potential at \(25^{\circ} \mathrm{C}\) is \(0.504 \mathrm{V}\) when the coated wire is dipped into a solution of unknown \(\left[\mathrm{CrO}_{4}^{2-}\right] .\) What is \(\left[\mathrm{CrO}_{4}^{2-}\right]\) for this solution? e. Using data from this problem and from Table \(17-1,\) calculate the solubility product \(\left(K_{\mathrm{sp}}\right)\) for \(\mathrm{Ag}_{2} \mathrm{CrO}_{4}\)
Consider the galvanic cell based on the following halfreactions: $$ \begin{array}{ll} \mathrm{Zn}^{2+}+2 \mathrm{e}^{-} \longrightarrow \mathrm{Zn} & \mathscr{E}^{\circ}=-0.76 \mathrm{V} \\ \mathrm{Fe}^{2+}+2 \mathrm{e}^{-} \longrightarrow \mathrm{Fe} & \mathscr{E}^{\circ}=-0.44 \mathrm{V} \end{array} $$ a. Determine the overall cell reaction and calculate \(\mathscr{E}_{\text {cell. }}\) b. Calculate \(\Delta G^{\circ}\) and \(K\) for the cell reaction at \(25^{\circ} \mathrm{C}\). c. Calculate \(\mathscr{C}_{\text {cell }}\) at \(25^{\circ} \mathrm{C}\) when \(\left[\mathrm{Zn}^{2+}\right]=0.10 \mathrm{M}\) and \(\left[\mathrm{Fe}^{2+}\right]=1.0 \times 10^{-5} \mathrm{M}\)
Aluminum is produced commercially by the electrolysis of \(\mathrm{Al}_{2} \mathrm{O}_{3}\) in the presence of a molten salt. If a plant has a continuous capacity of 1.00 million \(A\), what mass of aluminum can be produced in \(2.00 \mathrm{h} ?\)
Copper can be plated onto a spoon by placing the spoon in an acidic solution of \(\mathrm{CuSO}_{4}(a q)\) and connecting it to a copper strip via a power source as illustrated below: a. Label the anode and cathode, and describe the direction of the electron flow. b. Write out the chemical equations for the reactions that occur at each electrode.
Calculate \(\mathscr{E}^{\circ}\) for the following half-reaction: $$ \mathrm{AgI}(s)+\mathrm{e}^{-} \longrightarrow \mathrm{Ag}(s)+\mathrm{I}^{-}(a q) $$ (Hint: Reference the \(K_{\mathrm{sp}}\) value for AgI and the standard reduction potential for \(\mathrm{Ag}^{+} .\) )
What do you think about this solution?
We value your feedback to improve our textbook solutions.