Chapter 17: Problem 106
Consider the following half-reactions: $$\begin{array}{ll} \operatorname{IrCl}_{6}^{3-}+3 \mathrm{e}^{-} \longrightarrow \operatorname{Ir}+6 \mathrm{Cl}^{-} & \mathscr{E}^{\circ}=0.77 \mathrm{V} \\ \mathrm{PtCl}_{4}^{2-}+2 \mathrm{e}^{-} \longrightarrow \mathrm{Pt}+4 \mathrm{Cl}^{-} & \mathscr{E}^{\circ}=0.73 \mathrm{V} \\ \mathrm{PdCl}_{4}^{2-}+2 \mathrm{e}^{-} \longrightarrow \mathrm{Pd}+4 \mathrm{Cl}^{-} & \mathscr{E}^{\circ}=0.62 \mathrm{V} \end{array}$$ A hydrochloric acid solution contains platinum, palladium, and iridium as chloro-complex ions. The solution is a constant 1.0 \(M\) in chloride ion and \(0.020 \mathrm{M}\) in each complex ion. Is it feasible to separate the three metals from this solution by electrolysis? (Assume that \(99 \%\) of a metal must be plated out before another metal begins to plate out.)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.