Chapter 16: Problem 4
What types of experiments can be carried out to determine whether a reaction is spontaneous? Does spontaneity have any relationship to the final equilibrium position of a reaction? Explain.
Chapter 16: Problem 4
What types of experiments can be carried out to determine whether a reaction is spontaneous? Does spontaneity have any relationship to the final equilibrium position of a reaction? Explain.
All the tools & learning materials you need for study success - in one app.
Get started for freeMany biochemical reactions that occur in cells require relatively high concentrations of potassium ion \(\left(\mathrm{K}^{+}\right) .\) The concentration of \(\mathrm{K}^{+}\) in muscle cells is about \(0.15 \mathrm{M}\). The concentration of \(\mathrm{K}^{+}\) in blood plasma is about \(0.0050 \mathrm{M}\). The high internal concentration in cells is maintained by pumping \(\mathrm{K}^{+}\) from the plasma. How much work must be done to transport 1.0 mole of \(\mathrm{K}^{+}\) from the blood to the inside of a muscle cell at \(37^{\circ} \mathrm{C}\), normal body temperature? When 1.0 mole of \(\mathrm{K}^{+}\) is transferred from blood to the cells, do any other ions have to be transported? Why or why not?
At 1 atm, liquid water is heated above \(100^{\circ} \mathrm{C}\). For this process, which of the following choices (i-iv) is correct for \(\Delta S_{\text {surr }}\) ? \(\Delta S ?\) \(\Delta S_{\text {univ }}\) ? Explain each answer. i. greater than zero ii. less than zero iii. equal to zero iv. cannot be determined
Consider the dissociation of a weak acid HA \(\left(K_{\mathrm{a}}=4.5 \times 10^{-3}\right)\) in water: $$\mathrm{HA}(a q) \rightleftharpoons \mathrm{H}^{+}(a q)+\mathrm{A}^{-}(a q)$$ Calculate \(\Delta G^{\circ}\) for this reaction at \(25^{\circ} \mathrm{C}.\)
The standard free energies of formation and the standard enthalpies of formation at \(298 \mathrm{K}\) for diffuoroacetylene \(\left(\mathrm{C}_{2} \mathrm{F}_{2}\right)\) and hexafluorobenzene \(\left(\mathrm{C}_{6} \mathrm{F}_{6}\right)\) are $$\begin{array}{ccc} & \Delta G_{f}^{\circ}(\mathrm{kJ} / \mathrm{mol}) & \Delta H_{f}^{\circ}(\mathrm{kJ} / \mathrm{mol}) \\ \hline \mathrm{C}_{2} \mathrm{F}_{2}(g) & 191.2 & 241.3 \\\ \mathrm{C}_{6} \mathrm{F}_{6}(g) & 78.2 & 132.8 \end{array}$$ For the following reaction: $$\mathrm{C}_{6} \mathrm{F}_{6}(g) \rightleftharpoons 3 \mathrm{C}_{2} \mathrm{F}_{2}(g)$$ a. calculate \(\Delta S^{\circ}\) at \(298 \mathrm{K}\). b. calculate \(K\) at 298 K. c. estimate \(K\) at \(3000 .\) K, assuming \(\Delta H^{\circ}\) and \(\Delta S^{\circ}\) do not depend on temperature.
Gas \(\mathrm{A}_{2}\) reacts with gas \(\mathrm{B}_{2}\) to form gas \(\mathrm{AB}\) at a constant temperature. The bond energy of AB is much greater than that of either reactant. What can be said about the sign of \(\Delta H ? \Delta S_{\text {surr }}\) ? \(\Delta S ?\) Explain how potential energy changes for this process. Explain how random kinetic energy changes during the process.
What do you think about this solution?
We value your feedback to improve our textbook solutions.