Chapter 16: Problem 32
Which of the following involve an increase in the entropy of the system? a. melting of a solid b. sublimation c. freezing d. mixing e. separation f. boiling
Chapter 16: Problem 32
Which of the following involve an increase in the entropy of the system? a. melting of a solid b. sublimation c. freezing d. mixing e. separation f. boiling
All the tools & learning materials you need for study success - in one app.
Get started for freeAt 1 atm, liquid water is heated above \(100^{\circ} \mathrm{C}\). For this process, which of the following choices (i-iv) is correct for \(\Delta S_{\text {surr }}\) ? \(\Delta S ?\) \(\Delta S_{\text {univ }}\) ? Explain each answer. i. greater than zero ii. less than zero iii. equal to zero iv. cannot be determined
Given the following data: $$2 \mathrm{C}_{6} \mathrm{H}_{6}(l)+15 \mathrm{O}_{2}(g) \longrightarrow 12 \mathrm{CO}_{2}(g)+6 \mathrm{H}_{2} \mathrm{O}(l)$$ $$\Delta G^{\circ}=-6399 \mathrm{kJ}$$ $$\mathrm{C}(s)+\mathrm{O}_{2}(g) \longrightarrow \mathrm{CO}_{2}(g) \quad \Delta G^{\circ}=-394 \mathrm{kJ}$$ $$\mathrm{H}_{2}(g)+\frac{1}{2} \mathrm{O}_{2}(g) \longrightarrow \mathrm{H}_{2} \mathrm{O}(l) \quad \Delta G^{\circ}=-237 \mathrm{kJ}$$ calculate \(\Delta G^{\circ}\) for the reaction $$6 \mathrm{C}(s)+3 \mathrm{H}_{2}(g) \longrightarrow \mathrm{C}_{6} \mathrm{H}_{6}(l)$$
Some nonelectrolyte solute (molar mass \(=142 \mathrm{g} / \mathrm{mol}\) ) was dissolved in \(150 . \mathrm{mL}\) of a solvent (density \(=0.879 \mathrm{g} / \mathrm{cm}^{3}\) ). The elevated boiling point of the solution was \(355.4 \mathrm{K} .\) What mass of solute was dissolved in the solvent? For the solvent, the enthalpy of vaporization is \(33.90 \mathrm{kJ} / \mathrm{mol},\) the entropy of vaporization is \(95.95 \mathrm{J} / \mathrm{K} \cdot \mathrm{mol},\) and the boiling-point elevation constant is \(2.5 \mathrm{K} \cdot \mathrm{kg} / \mathrm{mol}.\)
Predict the sign of \(\Delta S^{\circ}\) and then calculate \(\Delta S^{\circ}\) for each of the following reactions. a. \(2 \mathrm{H}_{2} \mathrm{S}(g)+\mathrm{SO}_{2}(g) \longrightarrow 3 \mathrm{S}_{\text {rhombic }}(s)+2 \mathrm{H}_{2} \mathrm{O}(g)\) b. \(2 \mathrm{SO}_{3}(g) \longrightarrow 2 \mathrm{SO}_{2}(g)+\mathrm{O}_{2}(g)\) c. \(\mathrm{Fe}_{2} \mathrm{O}_{3}(s)+3 \mathrm{H}_{2}(g) \longrightarrow 2 \mathrm{Fe}(s)+3 \mathrm{H}_{2} \mathrm{O}(g)\)
Some water is placed in a coffee-cup calorimeter. When \(1.0 \mathrm{g}\) of an ionic solid is added, the temperature of the solution increases from \(21.5^{\circ} \mathrm{C}\) to \(24.2^{\circ} \mathrm{C}\) as the solid dissolves. For the dissolving process, what are the signs for \(\Delta S_{\mathrm{sys}}, \Delta S_{\text {surr, and }}\) \(\Delta S_{\text {univ }} ?\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.