Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Which of the following processes are spontaneous? a. Salt dissolves in \(\mathrm{H}_{2} \mathrm{O}\). b. A clear solution becomes a uniform color after a few drops of dye are added. c. Iron rusts. d. You clean your bedroom.

Short Answer

Expert verified
Processes a, b, and c (salt dissolving in \(\mathrm{H}_{2} \mathrm{O}\), a clear solution becoming uniform in color, and iron rusting) are spontaneous as they result in an increase in entropy and involve energy changes favorable for the process to occur. Process d (cleaning your bedroom) is non-spontaneous as it requires manual effort and results in a decrease in entropy.

Step by step solution

01

Process a: Salt dissolves in \(\mathrm{H}_{2} \mathrm{O}\).

Dissolving salt in water is a spontaneous process because it causes an increase in entropy (disorder) by mixing the salt and water molecules. Moreover, during this process, the energy is released (exothermic), making it favorable.
02

Process b: A clear solution becomes a uniform color after a few drops of dye are added.

This process is also spontaneous, as the dye molecules spread throughout the solution, increasing its entropy. Diffusion is a natural process, and the dye particles move randomly from a high concentration to a low concentration region, resulting in a uniform color without any external assistance.
03

Process c: Iron rusts.

Rusting of iron is a spontaneous process as it is an oxidation reaction. When iron is exposed to oxygen and moisture, it reacts to form rust (iron oxide), which is a more stable compound. This reaction releases energy, and the entropy increases due to the formation of more moles from the reactants, which makes this process spontaneous.
04

Process d: You clean your bedroom.

Cleaning your bedroom is not a spontaneous process, as it requires your manual effort to organize the items and clean the space. It also involves a decrease in entropy (disorder) as the bedroom becomes more organized after cleaning. Therefore, this process is non-spontaneous. From the above analysis, processes a, b, and c are spontaneous, while process d is not spontaneous.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Predict the sign of \(\Delta S^{\circ}\) and then calculate \(\Delta S^{\circ}\) for each of the following reactions. a. \(\mathrm{H}_{2}(g)+\frac{1}{2} \mathrm{O}_{2}(g) \longrightarrow \mathrm{H}_{2} \mathrm{O}(l)\) b. \(2 \mathrm{CH}_{3} \mathrm{OH}(g)+3 \mathrm{O}_{2}(g) \longrightarrow 2 \mathrm{CO}_{2}(g)+4 \mathrm{H}_{2} \mathrm{O}(g)\) c. \(\mathrm{HCl}(g) \longrightarrow \mathrm{H}^{+}(a q)+\mathrm{Cl}^{-}(a q)\)

Predict the sign of \(\Delta S^{\circ}\) and then calculate \(\Delta S^{\circ}\) for each of the following reactions. a. \(2 \mathrm{H}_{2} \mathrm{S}(g)+\mathrm{SO}_{2}(g) \longrightarrow 3 \mathrm{S}_{\text {rhombic }}(s)+2 \mathrm{H}_{2} \mathrm{O}(g)\) b. \(2 \mathrm{SO}_{3}(g) \longrightarrow 2 \mathrm{SO}_{2}(g)+\mathrm{O}_{2}(g)\) c. \(\mathrm{Fe}_{2} \mathrm{O}_{3}(s)+3 \mathrm{H}_{2}(g) \longrightarrow 2 \mathrm{Fe}(s)+3 \mathrm{H}_{2} \mathrm{O}(g)\)

What information can be determined from \(\Delta G\) for a reaction? Does one get the same information from \(\Delta G^{\circ},\) the standard free energy change? \(\Delta G^{\circ}\) allows determination of the equilibrium constant \(K\) for a reaction. How? How can one estimate the value of \(K\) at temperatures other than \(25^{\circ} \mathrm{C}\) for a reaction? How can one estimate the temperature where \(K=1\) for a reaction? Do all reactions have a specific temperature where \(K=1 ?\)

Consider the following reaction at \(298 \mathrm{K}:\) $$2 \mathrm{SO}_{2}(g)+\mathrm{O}_{2}(g) \longrightarrow 2 \mathrm{SO}_{3}(g)$$ An equilibrium mixture contains \(\mathrm{O}_{2}(g)\) and \(\mathrm{SO}_{3}(g)\) at partial pressures of 0.50 atm and 2.0 atm, respectively. Using data from Appendix \(4,\) determine the equilibrium partial pressure of \(\mathrm{SO}_{2}\) in the mixture. Will this reaction be most favored at a high or a low temperature, assuming standard conditions?

Sodium chloride is added to water (at \(25^{\circ} \mathrm{C}\) ) until it is saturated. Calculate the \(\mathrm{Cl}^{-}\) concentration in such a solution.

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free