Chapter 16: Problem 122
Impure nickel, refined by smelting sulfide ores in a blast furnace, can be converted into metal from \(99.90 \%\) to \(99.99 \%\) purity by the Mond process. The primary reaction involved in the Mond process is $$\mathrm{Ni}(s)+4 \mathrm{CO}(g) \rightleftharpoons \mathrm{Ni}(\mathrm{CO})_{4}(g)$$ a. Without referring to Appendix \(4,\) predict the sign of \(\Delta S^{\circ}\) for the above reaction. Explain. b. The spontaneity of the above reaction is temperature-dependent. Predict the sign of \(\Delta S_{\text {surr}}\) for this reaction. Explain. c. For \(\mathrm{Ni}(\mathrm{CO})_{4}(g), \Delta H_{\mathrm{f}}^{\circ}=-607 \mathrm{kJ} / \mathrm{mol}\) and \(S^{\circ}=417 \mathrm{J} / \mathrm{K}\) mol at 298 K. Using these values and data in Appendix 4 calculate \(\Delta H^{\circ}\) and \(\Delta S^{\circ}\) for the above reaction. d. Calculate the temperature at which \(\Delta G^{\circ}=0(K=1)\) for the above reaction, assuming that \(\Delta H^{\circ}\) and \(\Delta S^{\circ}\) do not depend on temperature.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.