Chapter 15: Problem 87
Calculate the concentration of \(\mathrm{Pb}^{2+}\) in each of the following. a. a saturated solution of \(\mathrm{Pb}(\mathrm{OH})_{2}, K_{\mathrm{sp}}=1.2 \times 10^{-15}\) b. a saturated solution of \(\mathrm{Pb}(\mathrm{OH})_{2}\) buffered at \(\mathrm{pH}=13.00\) c. Ethylenediaminetetraacetate (EDTA \(^{4-}\) ) is used as a complexing agent in chemical analysis and has the following structure: Solutions of EDTA \(^{4-}\) are used to treat heavy metal poisoning by removing the heavy metal in the form of a soluble complex ion. The reaction of EDTA \(^{4-}\) with \(\mathrm{Pb}^{2+}\) is $$\begin{aligned} \mathrm{Pb}^{2+}(a q)+\mathrm{EDTA}^{4-}(a q) \rightleftharpoons \mathrm{PbEDTA}^{2-}(a q) & \\ K &=1.1 \times 10^{18} \end{aligned}$$ Consider a solution with 0.010 mole of \(\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}\) added to \(1.0 \mathrm{L}\) of an aqueous solution buffered at \(\mathrm{pH}=13.00\) and containing 0.050 \(M\) \(\mathrm{Na}_{4} \mathrm{EDTA}\). Does \(\mathrm{Pb}(\mathrm{OH})_{2}\) precipitate from this solution?
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.