Chapter 15: Problem 70
A solution is prepared by mixing \(100.0 \mathrm{mL}\) of \(1.0 \times 10^{-4} \mathrm{M}\) \(\mathrm{Be}\left(\mathrm{NO}_{3}\right)_{2}\) and \(100.0 \mathrm{mL}\) of \(8.0 M \mathrm{NaF}\). $$\mathrm{Be}^{2+}(a q)+\mathrm{F}^{-}(a q) \rightleftharpoons \mathrm{BeF}^{+}(a q) \quad K_{1}=7.9 \times 10^{4}$$ $$\mathrm{BeF}^{+}(a q)+\mathrm{F}^{-}(a q) \rightleftharpoons \mathrm{BeF}_{2}(a q) \quad K_{2}=5.8 \times 10^{3}$$ $$\operatorname{BeF}_{2}(a q)+\mathrm{F}^{-}(a q) \rightleftharpoons \mathrm{BeF}_{3}^{-}(a q) \quad K_{3}=6.1 \times 10^{2}$$ $$\mathrm{BeF}_{3}^{-}(a q)+\mathrm{F}^{-}(a q) \rightleftharpoons \mathrm{BeF}_{4}^{2-}(a q) \quad K_{4}=2.7 \times 10^{1}$$ Calculate the equilibrium concentrations of \(\mathrm{F}^{-}, \mathrm{Be}^{2+}, \mathrm{BeF}^{+}\) \(\mathrm{BeF}_{2}, \mathrm{BeF}_{3}^{-},\) and \(\mathrm{BeF}_{4}^{2-}\) in this solution.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.