Chapter 15: Problem 62
Write equations for the stepwise formation of each of the following complex ions. a. \(\mathrm{CoF}_{6}^{3-}\) b. \(\mathrm{Zn}\left(\mathrm{NH}_{3}\right)_{4}^{2+}\)
Chapter 15: Problem 62
Write equations for the stepwise formation of each of the following complex ions. a. \(\mathrm{CoF}_{6}^{3-}\) b. \(\mathrm{Zn}\left(\mathrm{NH}_{3}\right)_{4}^{2+}\)
All the tools & learning materials you need for study success - in one app.
Get started for freeDescribe how you could separate the ions in each of the following groups by selective precipitation. a. \(\mathrm{Ag}^{+}, \mathrm{Mg}^{2+}, \mathrm{Cu}^{2+}\) b. \(\mathrm{Pb}^{2+}, \mathrm{Ca}^{2+}, \mathrm{Fe}^{2+}\) c. \(\mathrm{Pb}^{2+}, \mathrm{Bi}^{3+}\)
The \(\mathrm{Hg}^{2+}\) ion forms complex ions with \(\mathrm{I}^{-}\) as follows: $$\begin{aligned} \mathrm{Hg}^{2+}(a q)+\mathrm{I}^{-}(a q) & \rightleftharpoons \mathrm{HgI}^{+}(a q) & & K_{1}=1.0 \times 10^{8} \\ \mathrm{HgI}^{+}(a q)+\mathrm{I}^{-}(a q) & \rightleftharpoons \mathrm{HgI}_{2}(a q) & & K_{2}=1.0 \times 10^{5} \\ \mathrm{HgI}_{2}(a q)+\mathrm{I}^{-}(a q) & \rightleftharpoons \mathrm{HgI}_{3}^{-}(a q) & & K_{3}=1.0 \times 10^{9} \\ \mathrm{HgI}_{3}^{-}(a q)+\mathrm{I}^{-}(a q) & \rightleftharpoons \mathrm{HgI}_{4}^{2-}(a q) & & K_{4}=1.0 \times 10^{8} \end{aligned}$$ A solution is prepared by dissolving 0.088 mole of \(\mathrm{Hg}\left(\mathrm{NO}_{3}\right)_{2}\) and 5.00 moles of NaI in enough water to make 1.0 L of solution. a. Calculate the equilibrium concentration of \(\left[\mathrm{HgI}_{4}^{2-}\right] .\) b. Calculate the equilibrium concentration of \(\left[\mathrm{I}^{-}\right] .\) c. Calculate the equilibrium concentration of \(\left[\mathrm{Hg}^{2+}\right]\).
Calculate the solubility of \(\operatorname{Co}(\mathrm{OH})_{2}(s)\left(K_{\mathrm{sp}}=2.5 \times 10^{-16}\right)\) in a buffered solution with a pH of \(11.00 .\)
The \(K_{\mathrm{sp}}\) for lead iodide \(\left(\mathrm{PbI}_{2}\right)\) is \(1.4 \times 10^{-8} .\) Calculate the solubility of lead iodide in each of the following. a. water b. \(0.10 M \operatorname{Pb}\left(\mathrm{NO}_{3}\right)_{2}\) c. \(0.010 M\) NaI
In the presence of \(\mathrm{NH}_{3}, \mathrm{Cu}^{2+}\) forms the complex ion \(\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}^{2+} .\) If the equilibrium concentrations of \(\mathrm{Cu}^{2+}\) and \(\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}^{2+}\) are \(1.8 \times 10^{-17} M\) and \(1.0 \times 10^{-3} M,\) respectively, in a \(1.5-M \mathrm{NH}_{3}\) solution, calculate the value for the overall formation constant of \(\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}^{2+}\). $$\mathrm{Cu}^{2+}(a q)+4 \mathrm{NH}_{3}(a q) \rightleftharpoons \mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}^{2+}(a q) \quad K_{\mathrm{overall}}=?$$
What do you think about this solution?
We value your feedback to improve our textbook solutions.