Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Write balanced equations for the dissolution reactions and the corresponding solubility product expressions for each of the following solids. a. \(\mathrm{AgC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\) b. \(\mathrm{Al}(\mathrm{OH})_{3}\) c. \(\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}\)

Short Answer

Expert verified
a. Dissolution reaction: \(\mathrm{AgC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}(\mathrm{s}) \rightleftharpoons \mathrm{Ag}^{+}(\mathrm{aq}) + \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}(\mathrm{aq})\); \(K_{sp} = [\mathrm{Ag}^{+}][\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}]\) b. Dissolution reaction: \(\mathrm{Al}(\mathrm{OH})_{3}(\mathrm{s}) \rightleftharpoons \mathrm{Al}^{3+}(\mathrm{aq}) + 3\mathrm{OH}^{-}(\mathrm{aq})\); \(K_{sp} = [\mathrm{Al}^{3+}][\mathrm{OH}^{-}]^{3}\) c. Dissolution reaction: \(\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}(\mathrm{s}) \rightleftharpoons 3\mathrm{Ca}^{2+}(\mathrm{aq}) + 2\mathrm{PO}_{4}^{3-}(\mathrm{aq})\); \(K_{sp} = [\mathrm{Ca}^{2+}]^{3}[\mathrm{PO}_{4}^{3-}]^{2}\)

Step by step solution

01

Write the balanced dissolution reaction

For each solid, write down the balanced dissolution reaction. This involves breaking up the solid into its constituent ions. a. For \(\mathrm{AgC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\), \(\mathrm{AgC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}(\mathrm{s}) \rightleftharpoons \mathrm{Ag}^{+}(\mathrm{aq}) + \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}(\mathrm{aq})\) b. For \(\mathrm{Al}(\mathrm{OH})_{3}\), \(\mathrm{Al}(\mathrm{OH})_{3}(\mathrm{s}) \rightleftharpoons \mathrm{Al}^{3+}(\mathrm{aq}) + 3\mathrm{OH}^{-}(\mathrm{aq})\) c. For \(\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}\), \(\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}(\mathrm{s}) \rightleftharpoons 3\mathrm{Ca}^{2+}(\mathrm{aq}) + 2\mathrm{PO}_{4}^{3-}(\mathrm{aq})\)
02

Write the solubility product expressions

For each balanced dissolution reaction, write the solubility product expression, \(K_{sp}\), as the product of the concentration of its constituent ions raised to their respective stoichiometric coefficients in the balanced dissolution reaction. a. For \(\mathrm{AgC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\), \(K_{sp} = [\mathrm{Ag}^{+}][\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}]\) b. For \(\mathrm{Al}(\mathrm{OH})_{3}\), \(K_{sp} = [\mathrm{Al}^{3+}][\mathrm{OH}^{-}]^{3}\) c. For \(\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}\), \(K_{sp} = [\mathrm{Ca}^{2+}]^{3}[\mathrm{PO}_{4}^{3-}]^{2}\) These expressions represent the solubility product constants for the given solids. Each term shows the product of concentrations of the ions in the dissolution reaction raised to their stoichiometric coefficients, which can be used to quantify the solubility of these solids in water.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Calculate the concentration of \(\mathrm{Pb}^{2+}\) in each of the following. a. a saturated solution of \(\mathrm{Pb}(\mathrm{OH})_{2}, K_{\mathrm{sp}}=1.2 \times 10^{-15}\) b. a saturated solution of \(\mathrm{Pb}(\mathrm{OH})_{2}\) buffered at \(\mathrm{pH}=13.00\) c. Ethylenediaminetetraacetate (EDTA \(^{4-}\) ) is used as a complexing agent in chemical analysis and has the following structure: Solutions of EDTA \(^{4-}\) are used to treat heavy metal poisoning by removing the heavy metal in the form of a soluble complex ion. The reaction of EDTA \(^{4-}\) with \(\mathrm{Pb}^{2+}\) is $$\begin{aligned} \mathrm{Pb}^{2+}(a q)+\mathrm{EDTA}^{4-}(a q) \rightleftharpoons \mathrm{PbEDTA}^{2-}(a q) & \\ K &=1.1 \times 10^{18} \end{aligned}$$ Consider a solution with 0.010 mole of \(\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}\) added to \(1.0 \mathrm{L}\) of an aqueous solution buffered at \(\mathrm{pH}=13.00\) and containing 0.050 \(M\) \(\mathrm{Na}_{4} \mathrm{EDTA}\). Does \(\mathrm{Pb}(\mathrm{OH})_{2}\) precipitate from this solution?

The \(\mathrm{Hg}^{2+}\) ion forms complex ions with \(\mathrm{I}^{-}\) as follows: $$\begin{aligned} \mathrm{Hg}^{2+}(a q)+\mathrm{I}^{-}(a q) & \rightleftharpoons \mathrm{HgI}^{+}(a q) & & K_{1}=1.0 \times 10^{8} \\ \mathrm{HgI}^{+}(a q)+\mathrm{I}^{-}(a q) & \rightleftharpoons \mathrm{HgI}_{2}(a q) & & K_{2}=1.0 \times 10^{5} \\ \mathrm{HgI}_{2}(a q)+\mathrm{I}^{-}(a q) & \rightleftharpoons \mathrm{HgI}_{3}^{-}(a q) & & K_{3}=1.0 \times 10^{9} \\ \mathrm{HgI}_{3}^{-}(a q)+\mathrm{I}^{-}(a q) & \rightleftharpoons \mathrm{HgI}_{4}^{2-}(a q) & & K_{4}=1.0 \times 10^{8} \end{aligned}$$ A solution is prepared by dissolving 0.088 mole of \(\mathrm{Hg}\left(\mathrm{NO}_{3}\right)_{2}\) and 5.00 moles of NaI in enough water to make 1.0 L of solution. a. Calculate the equilibrium concentration of \(\left[\mathrm{HgI}_{4}^{2-}\right] .\) b. Calculate the equilibrium concentration of \(\left[\mathrm{I}^{-}\right] .\) c. Calculate the equilibrium concentration of \(\left[\mathrm{Hg}^{2+}\right]\).

Will a precipitate form when \(100.0 \mathrm{mL}\) of \(4.0 \times 10^{-4} \mathrm{M}\) \(\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}\) is added to \(100.0 \mathrm{mL}\) of \(2.0 \times 10^{-4}\) \(M\) \(\mathrm{NaOH} ?\)

On a hot day, a 200.0 -mL sample of a saturated solution of \(\mathrm{PbI}_{2}\) was allowed to evaporate until dry. If \(240 \mathrm{mg}\) of solid \(\mathrm{PbI}_{2}\) was collected after evaporation was complete, calculate the \(K_{\mathrm{sp}}\) value for \(\mathrm{PbI}_{2}\) on this hot day.

Calculate the molar solubility of \(\mathrm{Cd}(\mathrm{OH})_{2}, K_{\mathrm{sp}}=5.9 \times 10^{-11}\).

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free