Chapter 15: Problem 14
Sulfide precipitates are generally grouped as sulfides insoluble in acidic solution and sulfides insoluble in basic solution. Explain why there is a difference between the two groups of sulfide precipitates.
Chapter 15: Problem 14
Sulfide precipitates are generally grouped as sulfides insoluble in acidic solution and sulfides insoluble in basic solution. Explain why there is a difference between the two groups of sulfide precipitates.
All the tools & learning materials you need for study success - in one app.
Get started for freeAssuming that the solubility of \(\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}(s)\) is \(1.6 \times 10^{-7}\) \(\operatorname{mol} / \mathrm{L}\) at \(25^{\circ} \mathrm{C},\) calculate the \(K_{\mathrm{sp}}\) for this salt. Ignore any potential reactions of the ions with water.
The concentration of \(\mathrm{Pb}^{2+}\) in a solution saturated with \(\mathrm{PbBr}_{2}(s)\) is \(2.14 \times 10^{-2} \mathrm{M} .\) Calculate \(K_{\mathrm{sp}}\) for \(\mathrm{PbBr}_{2}\).
The \(\mathrm{Hg}^{2+}\) ion forms complex ions with \(\mathrm{I}^{-}\) as follows: $$\begin{aligned} \mathrm{Hg}^{2+}(a q)+\mathrm{I}^{-}(a q) & \rightleftharpoons \mathrm{HgI}^{+}(a q) & & K_{1}=1.0 \times 10^{8} \\ \mathrm{HgI}^{+}(a q)+\mathrm{I}^{-}(a q) & \rightleftharpoons \mathrm{HgI}_{2}(a q) & & K_{2}=1.0 \times 10^{5} \\ \mathrm{HgI}_{2}(a q)+\mathrm{I}^{-}(a q) & \rightleftharpoons \mathrm{HgI}_{3}^{-}(a q) & & K_{3}=1.0 \times 10^{9} \\ \mathrm{HgI}_{3}^{-}(a q)+\mathrm{I}^{-}(a q) & \rightleftharpoons \mathrm{HgI}_{4}^{2-}(a q) & & K_{4}=1.0 \times 10^{8} \end{aligned}$$ A solution is prepared by dissolving 0.088 mole of \(\mathrm{Hg}\left(\mathrm{NO}_{3}\right)_{2}\) and 5.00 moles of NaI in enough water to make 1.0 L of solution. a. Calculate the equilibrium concentration of \(\left[\mathrm{HgI}_{4}^{2-}\right] .\) b. Calculate the equilibrium concentration of \(\left[\mathrm{I}^{-}\right] .\) c. Calculate the equilibrium concentration of \(\left[\mathrm{Hg}^{2+}\right]\).
A friend tells you: "The constant \(K_{\mathrm{sp}}\) of a salt is called the solubility product constant and is calculated from the concentrations of ions in the solution. Thus, if salt A dissolves to a greater extent than salt \(\mathbf{B}\), salt \(\mathbf{A}\) must have a higher \(K_{\mathrm{sp}}\) than salt \(\mathbf{B}\)." Do you agree with your friend? Explain.
Devise as many ways as you can to experimentally determine the \(K_{\mathrm{sp}}\) value of a solid. Explain why each of these would work.
What do you think about this solution?
We value your feedback to improve our textbook solutions.