Chapter 15: Problem 12
When \(\mathrm{Na}_{3} \mathrm{PO}_{4}(a q)\) is added to a solution containing a metal ion and a precipitate forms, the precipitate generally could be one of two possibilities. What are the two possibilities?
Chapter 15: Problem 12
When \(\mathrm{Na}_{3} \mathrm{PO}_{4}(a q)\) is added to a solution containing a metal ion and a precipitate forms, the precipitate generally could be one of two possibilities. What are the two possibilities?
All the tools & learning materials you need for study success - in one app.
Get started for freeSilver chloride dissolves readily in \(2 M \mathrm{NH}_{3}\) but is quite insoluble in \(2 M \mathrm{NH}_{4} \mathrm{NO}_{3} .\) Explain.
The \(K_{\mathrm{sp}}\) of \(\mathrm{Al}(\mathrm{OH})_{3}\) is \(2 \times 10^{-32} .\) At what \(\mathrm{pH}\) will a \(0.2-M\) \(\mathrm{Al}^{3+}\) solution begin to show precipitation of \(\mathrm{Al}(\mathrm{OH})_{3} ?\)
A solution is prepared by adding 0.10 mole of \(\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6} \mathrm{Cl}_{2}\) to \(0.50 \mathrm{L}\) of \(3.0 M \mathrm{NH}_{3} .\) Calculate \(\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}^{2+}\right]\) and \(\left[\mathrm{Ni}^{2+}\right]\) in this solution. \(K_{\text {overall }}\) for \(\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}^{2+}\) is \(5.5 \times 10^{8} .\) That is, $$5.5 \times 10^{8}=\frac{\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}^{2+}\right]}{\left[\mathrm{Ni}^{2+}\right]\left[\mathrm{NH}_{3}\right]^{6}}$$ for the overall reaction $$ \mathrm{Ni}^{2+}(a q)+6 \mathrm{NH}_{3}(a q) \rightleftharpoons \mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}^{2+}(a q) $$
The equilibrium constant for the following reaction is \(1.0 \times 10^{23}:\) $$\mathrm{Cr}^{3+}(a q)+\mathrm{H}_{2} \mathrm{EDTA}^{2-}(a q) \rightleftharpoons \mathrm{CrEDTA}^{-}(a q)+2 \mathrm{H}^{+}(a q)$$ EDTA is used as a complexing agent in chemical analysis. Solutions of EDTA, usually containing the disodium salt \(\mathrm{Na}_{2} \mathrm{H}_{2} \mathrm{EDTA},\) are used to treat heavy metal poisoning. Calculate \(\left[\mathrm{Cr}^{3+}\right]\) at equilibrium in a solution originally \(0.0010 \mathrm{M}\) in \(\mathrm{Cr}^{3+}\) and \(0.050 M\) in \(\mathrm{H}_{2} \mathrm{EDTA}^{2-}\) and buffered at \(\mathrm{pH}=6.00\).
Write balanced equations for the dissolution reactions and the corresponding solubility product expressions for each of the following solids. a. \(\mathrm{AgC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\) b. \(\mathrm{Al}(\mathrm{OH})_{3}\) c. \(\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.