Chapter 15: Problem 1
Which of the following will affect the total amount of solute that can dissolve in a given amount of solvent? a. The solution is stirred. b. The solute is ground to fine particles before dissolving. c. The temperature changes.
Chapter 15: Problem 1
Which of the following will affect the total amount of solute that can dissolve in a given amount of solvent? a. The solution is stirred. b. The solute is ground to fine particles before dissolving. c. The temperature changes.
All the tools & learning materials you need for study success - in one app.
Get started for freeAluminum ions react with the hydroxide ion to form the precipitate \(\mathrm{Al}(\mathrm{OH})_{3}(s),\) but can also react to form the soluble complex ion \(\mathrm{Al}(\mathrm{OH})_{4}^{-} .\) In terms of solubility, \(\mathrm{Al}(\mathrm{OH})_{3}(s)\) will be more soluble in very acidic solutions as well as more soluble in very basic solutions. a. Write equations for the reactions that occur to increase the solubility of \(\mathrm{Al}(\mathrm{OH})_{3}(s)\) in very acidic solutions and in very basic solutions. b. Let's study the \(\mathrm{pH}\) dependence of the solubility of Al(OH) \(_{3}(s)\) in more detail. Show that the solubility of \(\mathrm{Al}(\mathrm{OH})_{3},\) as a function of \(\left[\mathrm{H}^{+}\right],\) obeys the equation $$ S=\left[\mathbf{H}^{+}\right]^{3} K_{\mathrm{sp}} / K_{\mathrm{w}}^{3}+K K_{\mathrm{w}} /\left[\mathrm{H}^{+}\right] $$ where \(S=\) solubility \(=\left[\mathrm{Al}^{3+}\right]+\left[\mathrm{Al}(\mathrm{OH})_{4}^{-}\right]\) and \(K\) is the equilibrium constant for $$ \mathrm{Al}(\mathrm{OH})_{3}(s)+\mathrm{OH}^{-}(a q) \rightleftharpoons \mathrm{Al}(\mathrm{OH})_{4}^{-}(a q) $$ c. The value of \(K\) is 40.0 and \(K_{\mathrm{sp}}\) for \(\mathrm{Al}(\mathrm{OH})_{3}\) is \(2 \times 10^{-32}\) Plot the solubility of \(\mathrm{Al}(\mathrm{OH})_{3}\) in the pH range \(4-12\).
Tooth enamel is composed of the mineral hydroxyapatite. The \(K_{\mathrm{sp}}\) of hydroxyapatite, \(\mathrm{Ca}_{5}\left(\mathrm{PO}_{4}\right)_{3} \mathrm{OH},\) is \(6.8 \times 10^{-37} .\) Calculate the solubility of hydroxyapatite in pure water in moles per liter. How is the solubility of hydroxyapatite affected by adding acid? When hydroxyapatite is treated with fluoride, the mineral fluorapatite, \(\mathrm{Ca}_{5}\left(\mathrm{PO}_{4}\right)_{3} \mathrm{F},\) forms. The \(K_{\mathrm{sp}}\) of this substance is \(1 \times 10^{-60} .\) Calculate the solubility of fluorapatite in water. How do these calculations provide a rationale for the fluoridation of drinking water?
The \(K_{\mathrm{sp}}\) for lead iodide \(\left(\mathrm{PbI}_{2}\right)\) is \(1.4 \times 10^{-8} .\) Calculate the solubility of lead iodide in each of the following. a. water b. \(0.10 M \operatorname{Pb}\left(\mathrm{NO}_{3}\right)_{2}\) c. \(0.010 M\) NaI
Cream of tartar, a common ingredient in cooking, is the common name for potassium bitartrate (abbreviated KBT, molar mass \(=188.2 \mathrm{g} / \mathrm{mol}\) ). Historically, KBT was a crystalline solid that formed on the casks of wine barrels during the fermentation process. Calculate the maximum mass of KBT that can dissolve in \(250.0 \mathrm{mL}\) of solution to make a saturated solution. The \(K_{\mathrm{sp}}\) value for \(\mathrm{KBT}\) is \(3.8 \times 10^{-4}\).
a. Using the \(K_{\mathrm{sp}}\) value for \(\mathrm{Cu}(\mathrm{OH})_{2}\left(1.6 \times 10^{-19}\right)\) and the overall formation constant for \(\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}^{2+}\left(1.0 \times 10^{13}\right)\) calculate the value for the equilibrium constant for the following reaction: $$\mathrm{Cu}(\mathrm{OH})_{2}(s)+4 \mathrm{NH}_{3}(a q) \rightleftharpoons \mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}^{2+}(a q)+2 \mathrm{OH}^{-}(a q)$$ b. Use the value of the equilibrium constant you calculated in part a to calculate the solubility (in mol/L) of \(\mathrm{Cu}(\mathrm{OH})_{2}\) in \(5.0 M \mathrm{NH}_{3} .\) In \(5.0 \mathrm{M} \mathrm{NH}_{3}\) the concentration of \(\mathrm{OH}^{-}\) is \(0.0095 M\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.