Chapter 14: Problem 19
A certain buffer is made by dissolving \(\mathrm{NaHCO}_{3}\) and \(\mathrm{Na}_{2} \mathrm{CO}_{3}\) in some water. Write equations to show how this buffer neutralizes added \(\mathrm{H}^{+}\) and \(\mathrm{OH}^{-}\).
Chapter 14: Problem 19
A certain buffer is made by dissolving \(\mathrm{NaHCO}_{3}\) and \(\mathrm{Na}_{2} \mathrm{CO}_{3}\) in some water. Write equations to show how this buffer neutralizes added \(\mathrm{H}^{+}\) and \(\mathrm{OH}^{-}\).
All the tools & learning materials you need for study success - in one app.
Get started for freeCalculate the \(\mathrm{pH}\) of each of the following solutions. a. \(0.100 M\) HONH \(_{2}\left(K_{\mathrm{b}}=1.1 \times 10^{-8}\right)\) b. \(0.100 M\) HONH \(_{3}\) Cl c. pure \(\mathrm{H}_{2} \mathrm{O}\) d. a mixture containing 0.100 \(M \mathrm{HONH}_{2}\) and \(0.100 \mathrm{M}\) \(\mathrm{HONH}_{3} \mathrm{Cl}\)
A buffer is prepared by dissolving \(\mathrm{HONH}_{2}\) and \(\mathrm{HONH}_{3} \mathrm{NO}_{3}\) in some water. Write equations to show how this buffer neutralizes added \(\mathrm{H}^{+}\) and \(\mathrm{OH}^{-}\).
You have \(75.0 \mathrm{mL}\) of \(0.10 \mathrm{M}\) HA. After adding \(30.0 \mathrm{mL}\) of \(0.10 M \mathrm{NaOH},\) the \(\mathrm{pH}\) is \(5.50 .\) What is the \(K_{\mathrm{a}}\) value of \(\mathrm{HA} ?\)
Calculate the pH of each of the following solutions. a. \(0.100 M\) propanoic acid \(\left(\mathrm{HC}_{3} \mathrm{H}_{5} \mathrm{O}_{2}, K_{\mathrm{a}}=1.3 \times 10^{-5}\right)\) b. \(0.100 M\) sodium propanoate \(\left(\mathrm{NaC}_{3} \mathrm{H}_{5} \mathrm{O}_{2}\right)\) c. pure \(\mathrm{H}_{2} \mathrm{O}\) d. a mixture containing \(0.100 M \mathrm{HC}_{3} \mathrm{H}_{5} \mathrm{O}_{2}\) and \(0.100 M\) \(\mathrm{NaC}_{3} \mathrm{H}_{5} \mathrm{O}_{2}\)
An aqueous solution contains dissolved \(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{3} \mathrm{Cl}\) and \(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2} .\) The concentration of \(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}\) is \(0.50 M\) and \(\mathrm{pH}\) is 4.20 a. Calculate the concentration of \(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{3}^{+}\) in this buffer solution. b. Calculate the \(\mathrm{pH}\) after \(4.0 \mathrm{g} \mathrm{NaOH}(s)\) is added to \(1.0 \mathrm{L}\) of this solution. (Neglect any volume change.)
What do you think about this solution?
We value your feedback to improve our textbook solutions.