Chapter 14: Problem 107
Consider the following four titrations (i-iv): i. \(150 \mathrm{mL}\) of \(0.2 \mathrm{M} \mathrm{NH}_{3}\left(K_{\mathrm{b}}=1.8 \times 10^{-5}\right)\) by \(0.2 \mathrm{M} \mathrm{HCl}\) ii. \(150 \mathrm{mL}\) of \(0.2 \mathrm{M}\) HCl by \(0.2 \mathrm{M} \mathrm{NaOH}\) iii. \(150 \mathrm{mL}\) of \(0.2 \mathrm{M} \mathrm{HOCl}\left(K_{\mathrm{a}}=3.5 \times 10^{-8}\right)\) by \(0.2 \mathrm{M} \mathrm{NaOH}\) iv. \(150 \mathrm{mL}\) of \(0.2 \mathrm{M} \mathrm{HF}\left(K_{\mathrm{a}}=7.2 \times 10^{-4}\right)\) by \(0.2 \mathrm{M} \mathrm{NaOH}\) a. Rank the four titrations in order of increasing \(\mathrm{pH}\) at the halfway point to equivalence (lowest to highest \(\mathrm{pH}\) ). b. Rank the four titrations in order of increasing \(\mathrm{pH}\) at the equivalence point. c. Which titration requires the largest volume of titrant (HCl or \(\mathrm{NaOH}\) ) to reach the equivalence point?
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.