Chapter 13: Problem 186
A sample containing 0.0500 mole of \(\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}\) is dissolved in enough water to make 1.00 L of solution. This solution contains hydrated \(\mathrm{SO}_{4}^{2-}\) and \(\mathrm{Fe}^{3+}\) ions. The latter behaves as an acid: $$\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}^{3+}(a q) \rightleftharpoons \mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{OH}^{2+}(a q)+\mathrm{H}^{+}(a q)$$ a. Calculate the expected osmotic pressure of this solution at \(25^{\circ} \mathrm{C}\) if the above dissociation is negligible. b. The actual osmotic pressure of the solution is 6.73 atm at \(25^{\circ} \mathrm{C} .\) Calculate \(K_{\mathrm{a}}\) for the dissociation reaction of \(\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}^{3+} .\) (To do this calculation, you must assume that none of the ions go through the semipermeable membrane. Actually, this is not a great assumption for the tiny \(\mathrm{H}^{+}\) ion.)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.