Chapter 12: Problem 17
Explain the difference between \(K, K_{\mathrm{p}},\) and \(Q\).
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.
Chapter 12: Problem 17
Explain the difference between \(K, K_{\mathrm{p}},\) and \(Q\).
These are the key concepts you need to understand to accurately answer the question.
All the tools & learning materials you need for study success - in one app.
Get started for freeConsider the decomposition of the compound \(\mathrm{C}_{5} \mathrm{H}_{6} \mathrm{O}_{3}\) as follows:$$\mathrm{C}_{5} \mathrm{H}_{6} \mathrm{O}_{3}(g) \longrightarrow \mathrm{C}_{2} \mathrm{H}_{6}(g)+3 \mathrm{CO}(g)$$.When a 5.63 -g sample of pure \(\mathrm{C}_{5} \mathrm{H}_{6} \mathrm{O}_{3}(g)\) was sealed into an otherwise empty 2.50 -L flask and heated to \(200 .^{\circ} \mathrm{C},\) the pressure in the flask gradually rose to 1.63 atm and remained at that value. Calculate \(K\) for this reaction.
Calculate a value for the equilibrium constant for the reaction $$\mathbf{O}_{2}(g)+\mathbf{O}(g) \rightleftharpoons \mathbf{O}_{3}(g)$$.given $$\begin{aligned}& \mathrm{NO}_{2}(g) \stackrel{h v}{\rightleftharpoons} \mathrm{NO}(g)+\mathrm{O}(g) & & K=6.8 \times 10^{-49} \\\\\mathrm{O}_{3}(g)+\mathrm{NO}(g) & \rightleftharpoons \mathrm{NO}_{2}(g)+\mathrm{O}_{2}(g) & & K=5.8 \times 10^{-34}\end{aligned}$$.(Hint: When reactions are added together, the equilibrium expressions are multiplied.) (Hint: When reactions are added together, the equilibrium expressions are multiplied.)
Nitric oxide and bromine at initial partial pressures of 98.4 and 41.3 torr, respectively, were allowed to react at \(300 .\) K. At equilibrium the total pressure was 110.5 torr. The reaction is $$2 \mathrm{NO}(g)+\mathrm{Br}_{2}(g) \rightleftharpoons 2 \mathrm{NOBr}(g)$$ a. Calculate the value of \(K_{\mathrm{p}}\). b. What would be the partial pressures of all species if NO and \(\mathrm{Br}_{2},\) both at an initial partial pressure of 0.30 atm, were allowed to come to equilibrium at this temperature?
Consider the reaction \(\mathrm{A}(g)+2 \mathrm{B}(g) \rightleftharpoons \mathrm{C}(g)+\mathrm{D}(g)\) in a 1.0-L rigid flask. Answer the following questions for each situation (a-d): i. Estimate a range (as small as possible) for the requested substance. For example, [A] could be between \(95 M\) and \(100 M\),ii. Explain how you decided on the limits for the estimated range. iii. Indicate what other information would enable you to narrow your estimated range. iv. Compare the estimated concentrations for a through d, and explain any differences. a. If at equilibrium \([\mathrm{A}]=1 M,\) and then 1 mole of \(\mathrm{C}\) is added, estimate the value for [A] once equilibrium is reestablished. b. If at equilibrium \([\mathrm{B}]=1 M,\) and then 1 mole of \(\mathrm{C}\) is added, estimate the value for \([\mathbf{B}]\) once equilibrium is reestablished. c. If at equilibrium \([\mathrm{C}]=1 M,\) and then 1 mole of \(\mathrm{C}\) is added, estimate the value for \([\mathrm{C}]\) once equilibrium is reestablished. d. If at equilibrium \([\mathrm{D}]=1 M,\) and then 1 mole of \(\mathrm{C}\) is added, estimate the value for [D] once equilibrium is reestablished.
At a particular temperature, \(K=4.0 \times 10^{-7}\) for the reaction $$\mathrm{N}_{2} \mathrm{O}_{4}(g) \rightleftharpoons 2 \mathrm{NO}_{2}(g)$$,In an experiment, 1.0 mole of \(\mathrm{N}_{2} \mathrm{O}_{4}\) is placed in a 10.0 -L vessel. Calculate the concentrations of \(\mathrm{N}_{2} \mathrm{O}_{4}\) and \(\mathrm{NO}_{2}\) when this reaction reaches equilibrium.
What do you think about this solution?
We value your feedback to improve our textbook solutions.