Chapter 11: Problem 9
The rate constant \((k)\) depends on which of the following (there may be more than one answer)? a. the concentration of the reactants b. the nature of the reactants c. the temperature d. the order of the reaction Explain.
Chapter 11: Problem 9
The rate constant \((k)\) depends on which of the following (there may be more than one answer)? a. the concentration of the reactants b. the nature of the reactants c. the temperature d. the order of the reaction Explain.
All the tools & learning materials you need for study success - in one app.
Get started for freeOne mechanism for the destruction of ozone in the upper atmosphere is $$\mathrm{O}_{3}(g)+\mathrm{NO}(g) \longrightarrow \mathrm{NO}_{2}(g)+\mathrm{O}_{2}(g) \quad \text { Slow }$$ $$\frac{\mathrm{NO}_{2}(g)+\mathrm{O}(g) \longrightarrow \mathrm{NO}(g)+\mathrm{O}_{2}(g)}{\mathrm{O}_{3}(g)+\mathrm{O}(g) \longrightarrow 2 \mathrm{O}_{2}(g)}\quad \text { Fast }$$ Overall reactiona. Which species is a catalyst? b. Which species is an intermediate? c. \(E_{\mathrm{a}}\) for the uncatalyzed reaction$$\mathrm{O}_{3}(g)+\mathrm{O}(g) \longrightarrow 2 \mathrm{O}_{2}(g)$$is \(14.0 \mathrm{kJ} . E_{\mathrm{a}}\) for the same reaction when catalyzed is 11.9 kJ. What is the ratio of the rate constant for the catalyzed reaction to that for the uncatalyzed reaction at \(25^{\circ} \mathrm{C} ?\) Assume that the frequency factor \(A\) is the same for each reaction.
The type of rate law for a reaction, either the differential rate law or the integrated rate law, is usually determined by which data is easiest to collect. Explain.
Consider two reaction vessels, one containing A and the other containing \(\mathrm{B},\) with equal concentrations at \(t=0 .\) If both substances decompose by first-order kinetics, where $$\begin{aligned} &k_{A}=4.50 \times 10^{-4} \mathrm{s}^{-1}\\\ &k_{\mathrm{B}}=3.70 \times 10^{-3} \mathrm{s}^{-1} \end{aligned}$$how much time must pass to reach a condition such that \([\mathrm{A}]=\) \(4.00[\mathrm{B}] ?\)
One of the concerns about the use of Freons is that they will migrate to the upper atmosphere, where chlorine atoms can be generated by the following reaction: $$\mathrm{CCl}_{2} \mathrm{F}_{2}(g) \stackrel{h v}{\longrightarrow} \mathrm{CF}_{2} \mathrm{Cl}(g)+\mathrm{Cl}(g)$$ Chlorine atoms can act as a catalyst for the destruction of ozone. The activation energy for the reaction $$\mathrm{Cl}(g)+\mathrm{O}_{3}(g) \longrightarrow \mathrm{ClO}(g)+\mathrm{O}_{2}(g)$$is \(2.1 \mathrm{kJ} / \mathrm{mol} .\) Which is the more effective catalyst for the destruction of ozone, Cl or NO? (See Exercise 75.)
Consider a reaction of the type aA \(\longrightarrow\) products, in which the rate law is found to be rate \(=k[\mathrm{A}]^{3}\) (termolecular reactions are improbable but possible). If the first half-life of the reaction is found to be \(40 .\) s, what is the time for the second half-life? Hint: Using your calculus knowledge, derive the integrated rate law from the differential rate law for a termolecular reaction: $$\text { Rate }=\frac{-d[\mathrm{A}]}{d t}=k[\mathrm{A}]^{3}$$
What do you think about this solution?
We value your feedback to improve our textbook solutions.