Chapter 11: Problem 112
Hydrogen peroxide and the iodide ion react in acidic solution as follows: $$\mathrm{H}_{2} \mathrm{O}_{2}(a q)+3 \mathrm{I}^{-}(a q)+2 \mathrm{H}^{+}(a q) \longrightarrow \mathrm{I}_{3}^{-}(a q)+2 \mathrm{H}_{2} \mathrm{O}(l)$$ The kinetics of this reaction were studied by following the decay of the concentration of \(\mathrm{H}_{2} \mathrm{O}_{2}\) and constructing plots of \(\ln \left[\mathrm{H}_{2} \mathrm{O}_{2}\right]\) versus time. All the plots were linear and all solutions had \(\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]_{0}=8.0 \times 10^{-4} \mathrm{mol} / \mathrm{L} .\) The slopes of these straight lines depended on the initial concentrations of \(\mathrm{I}^{-}\) and \(\mathrm{H}^{+} .\) The results follow: The rate law for this reaction has the form $$\text { Rate }=\frac{-\Delta\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]}{\Delta t}=\left(k_{1}+k_{2}\left[\mathrm{H}^{+}\right]\right)\left[\mathrm{I}^{-}\right]^{m}\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]^{n}$$ a. Specify the order of this reaction with respect to \(\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]\) and \(\left[\mathrm{I}^{-}\right]\) b. Calculate the values of the rate constants, \(k_{1}\) and \(k_{2}\) c. What reason could there be for the two-term dependence of the rate on \(\left[\mathrm{H}^{+}\right] ?\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.