Chapter 10: Problem 18
The weak electrolyte \(\mathrm{NH}_{3}(g)\) does not obey Henry's law. Why? \(\mathrm{O}_{2}(g)\) obeys Henry's law in water but not in blood (an aqueous solution). Why?
Chapter 10: Problem 18
The weak electrolyte \(\mathrm{NH}_{3}(g)\) does not obey Henry's law. Why? \(\mathrm{O}_{2}(g)\) obeys Henry's law in water but not in blood (an aqueous solution). Why?
All the tools & learning materials you need for study success - in one app.
Get started for freeA solution of sodium chloride in water has a vapor pressure of 19.6 torr at \(25^{\circ} \mathrm{C} .\) What is the mole fraction of solute particles in this solution? What would be the vapor pressure of this solution at \(45^{\circ} \mathrm{C} ?\) The vapor pressure of pure water is 23.8 torr at \(25^{\circ} \mathrm{C}\) and 71.9 torr at \(45^{\circ} \mathrm{C},\) and assume sodium chloride exists as \(\mathrm{Na}^{+}\) and \(\mathrm{Cl}^{-}\) ions in solution.
The high melting points of ionic solids indicate that a lot of energy must be supplied to separate the ions from one another. How is it possible that the ions can separate from one another when soluble ionic compounds are dissolved in water, often with essentially no temperature change?
A 0.500 -g sample of a compound is dissolved in enough water to form \(100.0 \mathrm{mL}\) of solution. This solution has an osmotic pressure of 2.50 atm at \(25^{\circ} \mathrm{C}\). If each molecule of the solute dissociates into two particles (in this solvent), what is the molar mass of this solute?
Which of the following will have the lowest total vapor pressure at \(25^{\circ} \mathrm{C} ?\) a. pure water (vapor pressure \(=23.8\) torr at \(25^{\circ} \mathrm{C}\) ) b. a solution of glucose in water with \(\chi_{\mathrm{C}_{\mathrm{s}} \mathrm{H}_{\mathrm{l} 2} \mathrm{O}_{\mathrm{s}}}=0.01\) c. a solution of sodium chloride in water with \(\chi_{\mathrm{NaCl}}=0.01\) d. a solution of methanol in water with \(\chi_{\mathrm{CH_{3}}, \mathrm{OH}}=0.2\) (Consider the vapor pressure of both methanol \([143\) torr at \(\left.25^{\circ} \mathrm{C}\right]\) and water.
How would you prepare 1.0 L of an aqueous solution of sodium chloride having an osmotic pressure of 15 atm at \(22^{\circ} \mathrm{C} ?\) Assume sodium chloride exists as \(\mathrm{Na}^{+}\) and \(\mathrm{Cl}^{-}\) ions in solution.
What do you think about this solution?
We value your feedback to improve our textbook solutions.