Chapter 10: Problem 10
Consider a beaker of salt water sitting open in a room. Over time, does the vapor pressure increase, decrease, or stay the same? Explain.
Chapter 10: Problem 10
Consider a beaker of salt water sitting open in a room. Over time, does the vapor pressure increase, decrease, or stay the same? Explain.
All the tools & learning materials you need for study success - in one app.
Get started for freeA \(2.00-\mathrm{g}\) sample of a large biomolecule was dissolved in 15.0 g carbon tetrachloride. The boiling point of this solution was determined to be \(77.85^{\circ} \mathrm{C}\). Calculate the molar mass of the biomolecule. For carbon tetrachloride, the boiling-point constant is \(5.03^{\circ} \mathrm{C} \cdot \mathrm{kg} / \mathrm{mol},\) and the boiling point of pure carbon tetrachloride is \(76.50^{\circ} \mathrm{C}\)
Explain the following on the basis of the behavior of atoms and/or ions. a. Cooking with water is faster in a pressure cooker than in an open pan. b. Salt is used on icy roads. c. Melted sea ice from the Arctic Ocean produces fresh water. d. \(\mathrm{CO}_{2}(s)\) (dry ice) does not have a normal boiling point under normal atmospheric conditions, even though \(\mathrm{CO}_{2}\) is a liquid in fire extinguishers. e. Adding a solute to a solvent extends the liquid phase over a larger temperature range.
For each of the following pairs, predict which substance is more soluble in water. a. \(\mathrm{CH}_{3} \mathrm{NH}_{2}\) or \(\mathrm{NH}_{3}\) b. \(\mathrm{CH}_{3} \mathrm{CN}\) or \(\mathrm{CH}_{3} \mathrm{OCH}_{3}\) c. \(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}\) or \(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{3}\) d. \(\mathrm{CH}_{3} \mathrm{OH}\) or \(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}\) e. \(\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCH}_{2} \mathrm{OH}\) or \(\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{6} \mathrm{OH}\) f. \(\mathrm{CH}_{3} \mathrm{OCH}_{3}\) or \(\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}\)
A \(4.7 \times 10^{-2}\) mg sample of a protein is dissolved in water to make \(0.25 \mathrm{mL}\) of solution. The osmotic pressure of the solution is 0.56 torr at \(25^{\circ} \mathrm{C}\). What is the molar mass of the protein?
What mass of glycerin \(\left(\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}_{3}\right),\) a nonelectrolyte, must be dissolved in \(200.0 \mathrm{g}\) water to give a solution with a freezing point of \(-1.50^{\circ} \mathrm{C} ?\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.