Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

For lighter, stable isotopes, the ratio of the mass number to the atomic number is close to a certain value. What is the value? What happens to the value of the mass number to atomic number ratio as stable isotopes become heavier?

Short Answer

Expert verified
For lighter, stable isotopes, the ratio of the mass number (A) to the atomic number (Z) is approximately 2, meaning \(\frac{A}{Z} \approx 2\). As stable isotopes become heavier, the ratio \(\frac{A}{Z}\) increases due to the need for more neutrons to maintain stability in the nucleus against the stronger electrostatic repulsion caused by a larger number of protons.

Step by step solution

01

1. Determining the ratio for lighter, stable isotopes

For lighter, stable isotopes, the ratio of the mass number (A) to the atomic number (Z) is approximately 2. This means that the mass number (number of protons and neutrons) is twice the atomic number (number of protons): \[ \frac{A}{Z} \approx 2 \]
02

2. Understanding the trend with heavier isotopes

As stable isotopes become heavier, the ratio \(\frac{A}{Z}\) increases. This is because adding more neutrons is necessary to increase the stability of the nucleus for elements with a higher atomic number (more protons). The larger number of protons leads to a stronger electrostatic repulsion within the nucleus, so adding more neutrons with their strong nuclear force helps offset this repulsion and maintain stability.
03

3. Conclusion

The ratio of the mass number to the atomic number for lighter, stable isotopes is approximately 2. As the isotopes become heavier, the value of this ratio increases due to the need for an increased number of neutrons for stability.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Indium oxide contains \(4.784 \mathrm{g}\) of indium for every \(1.000 \mathrm{g}\) of oxygen. In \(1869,\) when Mendeleev first presented his version of the periodic table, he proposed the formula \(\operatorname{In}_{2} \mathrm{O}_{3}\) for indium oxide. Before that time it was thought that the formula was InO. What values for the atomic mass of indium are obtained using these two formulas? Assume that oxygen has an atomic mass of \(16.00 .\)

What is the modern view of the structure of the atom?

Hydrazine, ammonia, and hydrogen azide all contain only nitrogen and hydrogen. The mass of hydrogen that combines with \(1.00 \mathrm{g}\) of nitrogen for each compound is \(1.44 \times 10^{-1} \mathrm{g}\) \(2.16 \times 10^{-1} \mathrm{g},\) and \(2.40 \times 10^{-2} \mathrm{g},\) respectively. Show how these data illustrate the law of multiple proportions.

Section I-5 describes the postulates of Dalton's atomic theory. With some modifications, these postulates hold up very well regarding how we view elements, compounds, and chemical reactions today. Answer the following questions concerning Dalton's atomic theory and the modifications made today. a. The atom can be broken down into smaller parts. What are the smaller parts? b. How are atoms of hydrogen identical to each other and how can they be different from each other? c. How are atoms of hydrogen different from atoms of helium? How can H atoms be similar to He atoms? d. How is water different from hydrogen peroxide \(\left(\mathrm{H}_{2} \mathrm{O}_{2}\right)\) even though both compounds are composed of only hydrogen and oxygen? e. What happens in a chemical reaction and why is mass conserved in a chemical reaction?

When mixtures of gaseous \(\mathrm{H}_{2}\) and gaseous \(\mathrm{Cl}_{2}\) react, a product forms that has the same properties regardless of the relative amounts of \(\mathrm{H}_{2}\) and \(\mathrm{Cl}_{2}\) used. a. How is this result interpreted in terms of the law of definite proportion? b. When a volume of \(\mathrm{H}_{2}\) reacts with an equal volume of \(\mathrm{Cl}_{2}\) at the same temperature and pressure, what volume of product having the formula HCl is formed?

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free