Chapter 19: Problem 8
Why does the entropy of a gas increase when it expands into a vacuum?
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.
Chapter 19: Problem 8
Why does the entropy of a gas increase when it expands into a vacuum?
These are the key concepts you need to understand to accurately answer the question.
All the tools & learning materials you need for study success - in one app.
Get started for freeWithout doing any calculations, determine the sign of \(\Delta S_{\text {sys }}\) for each chemical reaction. a. \(2 \mathrm{KClO}_{3}(s) \longrightarrow 2 \mathrm{KCl}(s)+3 \mathrm{O}_{2}(g)\) b. \(\mathrm{CH}_{2}=\mathrm{CH}_{2}(g)+\mathrm{H}_{2}(g) \longrightarrow \mathrm{CH}_{3} \mathrm{CH}_{3}(g)\) c. \(\mathrm{Na}(s)+1 / 2 \mathrm{Cl}_{2}(g) \longrightarrow \mathrm{NaCl}(s)\) d. \(\mathrm{N}_{2}(g)+3 \mathrm{H}_{2}(g) \longrightarrow 2 \mathrm{NH}_{3}(g)\)
Given the values of \(\Delta H_{\mathrm{rxn}},\) and \(T,\) determine \(\Delta S_{\mathrm{rxn}},\) and predict whether or not each reaction is spontaneous. (Assume that all reactants and products are in their standard states.) a. \(\Delta H_{\mathrm{rxn}}^{\circ}=-95 \mathrm{~kJ} ; \Delta S_{\mathrm{rxn}}^{\circ}=-157 \mathrm{~J} / \mathrm{K} ; T=298 \mathrm{~K}\) b. \(\Delta H_{\mathrm{rxn}}^{\circ}=-95 \mathrm{~kJ} ; \Delta S_{\mathrm{rxn}}^{\circ}=-157 \mathrm{~J} / \mathrm{K} ; T=855 \mathrm{~K}\) c. \(\Delta H_{\mathrm{rxn}}^{\circ}=+95 \mathrm{~kJ} ; \Delta S_{\mathrm{rxn}}^{\circ}=-157 \mathrm{~J} / \mathrm{K} ; T=298 \mathrm{~K}\) d. \(\Delta H_{\mathrm{rxn}}^{\circ}=-95 \mathrm{~kJ} ; \Delta S_{\mathrm{rxn}}^{\circ}=+157 \mathrm{~J} / \mathrm{K} ; T=398 \mathrm{~K}\)
Given the values of \(\Delta H_{\mathrm{rxn}}^{\circ}, \Delta S_{\mathrm{rxn}}^{\circ},\) and \(T,\) determine \(\Delta S_{\text {univ }}\) and predict whether or not each reaction is spontaneous. (Assume that all reactants and products are in their standard states.) a. \(\Delta H_{\mathrm{rxn}}^{\circ}=+115 \mathrm{~kJ} ; \Delta S_{\mathrm{rxn}}^{\circ}=-263 \mathrm{~J} / \mathrm{K} ; T=298 \mathrm{~K}\) b. \(\Delta H_{\mathrm{rxn}}^{\circ}=-115 \mathrm{~kJ} ; \Delta S_{\mathrm{rxn}}^{\circ}=+263 \mathrm{~J} / \mathrm{K} ; T=298 \mathrm{~K}\) c. \(\Delta H_{\mathrm{rxn}}^{\circ}=-115 \mathrm{~kJ} ; \Delta S_{\mathrm{rxn}}^{\circ}=-263 \mathrm{~J} / \mathrm{K} ; T=298 \mathrm{~K}\) d. \(\Delta H_{\mathrm{rxn}}^{\circ}=-115 \mathrm{~kJ} ; \Delta S_{\mathrm{rxn}}^{\circ}=-263 \mathrm{~J} / \mathrm{K} ; T=615 \mathrm{~K}\)
Rank each set of substances in order of increasing standard molar entropy \(\left(S^{\circ}\right)\). Explain your reasoning. a. \(\mathrm{NH}_{3}(g) ; \operatorname{Ne}(g) ; \mathrm{SO}_{2}(g) ; \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}(g) ; \operatorname{He}(g)\) b. \(\mathrm{H}_{2} \mathrm{O}(s) ; \mathrm{H}_{2} \mathrm{O}(l) ; \mathrm{H}_{2} \mathrm{O}(g)\) c. \(\mathrm{CH}_{4}(g) ; \mathrm{CF}_{4}(g) ; \mathrm{CCl}_{4}(g)\)
Given the data, calculate \(\Delta S_{\text {vap }}\) for each of the first four liquids. \(\left(\Delta S_{\text {vap }}=\Delta H_{\text {vap }} / T,\right.\) where \(T\) is in \(\left.K\right)\) $$ \begin{array}{llcc} \text { Compound } & \text { Name } & \text { BP }\left({ }^{\circ} \mathrm{C}\right) & \Delta H_{\text {vap }}(\mathrm{kJ} / \mathrm{mol} \text { ) at BP } \\ \mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O} & \text { Diethyl ether } & 34.6 & 26.5 \\ \hline \mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O} & \text { Acetone } & 56.1 & 29.1 \\ \hline \mathrm{C}_{6} \mathrm{H}_{6} \mathrm{O} & \text { Benzene } & 79.8 & 30.8 \\ \hline \mathrm{CHCl}_{3} & \text { Chloroform } & 60.8 & 29.4 \\ \hline \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} & \text { Ethanol } & 77.8 & 38.6 \\ \hline \mathrm{H}_{2} \mathrm{O} & \text { Water } & 100 & 40.7 \\ \hline \end{array} $$ All four values should be close to each other. Predict whether the last two liquids in the table have \(\Delta S_{\text {vap }}\) in this same range. If not, predict whether it is larger or smaller and explain. Verify your prediction.
What do you think about this solution?
We value your feedback to improve our textbook solutions.