Given the data, calculate \(\Delta S_{\text {vap }}\) for each of the first four
liquids. \(\left(\Delta S_{\text {vap }}=\Delta H_{\text {vap }} / T,\right.\)
where \(T\) is in \(\left.K\right)\) $$
\begin{array}{llcc}
\text { Compound } & \text { Name } & \text { BP }\left({ }^{\circ}
\mathrm{C}\right) & \Delta H_{\text {vap }}(\mathrm{kJ} / \mathrm{mol} \text {
) at BP } \\
\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O} & \text { Diethyl ether } & 34.6 &
26.5 \\
\hline \mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O} & \text { Acetone } & 56.1 &
29.1 \\
\hline \mathrm{C}_{6} \mathrm{H}_{6} \mathrm{O} & \text { Benzene } & 79.8 &
30.8 \\
\hline \mathrm{CHCl}_{3} & \text { Chloroform } & 60.8 & 29.4 \\
\hline \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} & \text { Ethanol } & 77.8 &
38.6 \\
\hline \mathrm{H}_{2} \mathrm{O} & \text { Water } & 100 & 40.7 \\
\hline
\end{array}
$$ All four values should be close to each other. Predict whether
the last two liquids in the table have \(\Delta S_{\text {vap }}\) in this same
range. If not, predict whether it is larger or smaller and explain. Verify
your prediction.