Chapter 19: Problem 109
Given the data, calculate \(\Delta S_{\text {vap }}\) for each of the first four liquids. \(\left(\Delta S_{\text {vap }}=\Delta H_{\text {vap }} / T,\right.\) where \(T\) is in \(\left.K\right)\) $$ \begin{array}{llcc} \text { Compound } & \text { Name } & \text { BP }\left({ }^{\circ} \mathrm{C}\right) & \Delta H_{\text {vap }}(\mathrm{kJ} / \mathrm{mol} \text { ) at BP } \\ \mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O} & \text { Diethyl ether } & 34.6 & 26.5 \\ \hline \mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O} & \text { Acetone } & 56.1 & 29.1 \\ \hline \mathrm{C}_{6} \mathrm{H}_{6} \mathrm{O} & \text { Benzene } & 79.8 & 30.8 \\ \hline \mathrm{CHCl}_{3} & \text { Chloroform } & 60.8 & 29.4 \\ \hline \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} & \text { Ethanol } & 77.8 & 38.6 \\ \hline \mathrm{H}_{2} \mathrm{O} & \text { Water } & 100 & 40.7 \\ \hline \end{array} $$ All four values should be close to each other. Predict whether the last two liquids in the table have \(\Delta S_{\text {vap }}\) in this same range. If not, predict whether it is larger or smaller and explain. Verify your prediction.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.