Chapter 15: Problem 94
The reaction \(2 \mathrm{H}_{2} \mathrm{O}_{2}(a q) \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}(l)+\mathrm{O}_{2}(g)\) is first order in \(\mathrm{H}_{2} \mathrm{O}_{2}\) and under certain conditions has a rate constant of \(0.00752 \mathrm{~s}^{-1}\) at \(20.0^{\circ} \mathrm{C}\). A reaction vessel initially contains \(150.0 \mathrm{~mL}\) of \(30.0 \% \mathrm{H}_{2} \mathrm{O}_{2}\) by mass solution (the density of the solution is \(1.11 \mathrm{~g} / \mathrm{mL}\) ). The gaseous oxygen is collected over water at \(20.0^{\circ} \mathrm{C}\) as it forms. What volume of \(\mathrm{O}_{2}\) forms in \(\begin{array}{lllll}85.0 & \text { seconds at a barometric pressure of } & 742.5 & \mathrm{mmHg} ?\end{array}\) (The vapor pressure of water at this temperature is \(17.5 \mathrm{mmHg}\).)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.