Chapter 13: Problem 87
A tetrahedral site in a closest-packed lattice is formed by four spheres at the corners of a regular tetrahedron. This is equivalent to placing the spheres at alternate corners of a cube. In such a closest-packed arrangement the spheres are in contact, and if the spheres have a radius \(r\), the diagonal of the face of the cube is \(2 r\). The tetrahedral hole is inside the middle of the cube. Find the length of the body diagonal of this cube and then find the radius of the tetrahedral hole.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.