The \(K_{\mathrm{b}}\) of \(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\), at \(25
\mathrm{YC}\), is \(1.7 \times 10^{-9}\). Find "x" (CTQ 10), and enter the
equilibrium concentration values in the last row of the following table.
$$
\begin{array}{|l|c|c|c|}
\hline & \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N} & \mathrm{OH}^{-} &
\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NH}^{+} \\
\hline \text { initial moles } & 0.30 & 0 & 0 \\
\hline \text { change in moles } & & & \\
\hline \text { equilibrium moles } & & & \\
\hline \text { equilibrium conc } & & & \\
\hline \begin{array}{l}
\text { equilibrium conc } \\
\text { value }
\end{array} & & & \\
\hline
\end{array}
$$
Verify that your equilibrium concentrations are correct.