Chapter 6: Problem 14
What is the difference between \(\Delta H\) and \(\Delta E\) ?
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.
Chapter 6: Problem 14
What is the difference between \(\Delta H\) and \(\Delta E\) ?
These are the key concepts you need to understand to accurately answer the question.
All the tools & learning materials you need for study success - in one app.
Get started for freeThe preparation of \(\mathrm{NO}_{2}(g)\) from \(\mathrm{N}_{2}(g)\) and \(\mathrm{O}_{2}(g)\) is an endothermic reaction: $$ \mathrm{N}_{2}(g)+\mathrm{O}_{2}(g) \longrightarrow \mathrm{NO}_{2}(g) \text { (unbalanced) } $$ The enthalpy change of reaction for the balanced equation (with lowest whole- number coefficients) is \(\Delta H=67.7 \mathrm{~kJ}\). If \(2.50 \times 10^{2} \mathrm{~mL} \mathrm{~N}_{2}(g)\) at \(100 .{ }^{\circ} \mathrm{C}\) and \(3.50 \mathrm{~atm}\) and \(4.50 \times\) \(10^{2} \mathrm{~mL} \mathrm{O}_{2}(g)\) at \(100 .{ }^{\circ} \mathrm{C}\) and \(3.50\) atm are mixed, what amount of heat is necessary to synthesize the maximum yield of \(\mathrm{NO}_{2}(g) ?\)
For the process \(\mathrm{H}_{2} \mathrm{O}(l) \longrightarrow \mathrm{H}_{2} \mathrm{O}(g)\) at \(298 \mathrm{~K}\) and \(1.0 \mathrm{~atm}\), \(\Delta H\) is more positive than \(\Delta E\) by \(2.5 \mathrm{~kJ} / \mathrm{mol}\). What does the \(2.5 \mathrm{~kJ} / \mathrm{mol}\) quantity represent?
Consider the dissolution of \(\mathrm{CaCl}_{2}\) : \(\mathrm{CaCl}_{2}(s) \longrightarrow \mathrm{Ca}^{2+}(a q)+2 \mathrm{Cl}^{-}(a q) \quad \Delta H=-81.5 \mathrm{~kJ}\) An \(11.0-\mathrm{g}\) sample of \(\mathrm{CaCl}_{2}\) is dissolved in \(125 \mathrm{~g}\) water, with both substances at \(25.0^{\circ} \mathrm{C}\). Calculate the final temperature of the solution assuming no heat loss to the surroundings and assuming the solution has a specific heat capacity of \(4.18 \mathrm{~J} /{ }^{\circ} \mathrm{C} \cdot \mathrm{g}\)
Given the following data $$ \begin{aligned} 2 \mathrm{O}_{3}(g) & \longrightarrow 3 \mathrm{O}_{2}(g) & \Delta H &=-427 \mathrm{~kJ} \\ \mathrm{O}_{2}(g) & \longrightarrow 2 \mathrm{O}(g) & \Delta H &=495 \mathrm{~kJ} \\ \mathrm{NO}(g)+\mathrm{O}_{3}(g) & \longrightarrow \mathrm{NO}_{2}(g)+\mathrm{O}_{2}(g) & \Delta H=-199 \mathrm{~kJ} \end{aligned} $$ calculate \(\Delta H\) for the reaction $$ \mathrm{NO}(g)+\mathrm{O}(g) \longrightarrow \mathrm{NO}_{2}(g) $$
A gas absorbs \(45 \mathrm{~kJ}\) of heat and does \(29 \mathrm{~kJ}\) of work. Calculate \(\Delta E\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.