The \(\mathrm{Hg}^{2+}\) ion forms complex ions with \(\mathrm{I}^{-}\) as
follows:
\(\mathrm{Hg}^{2+}(a q)+\mathrm{I}^{-}(a q) \rightleftharpoons
\mathrm{HgI}^{+}(a q) \quad K_{1}=1.0 \times 10^{\mathrm{s}}\)
\(\mathrm{HgI}^{+}(a q)+\mathrm{I}^{-}(a q) \rightleftharpoons
\mathrm{HgI}_{2}(a q) \quad K_{2}=1.0 \times 10^{5}\)
\(\mathrm{HgI}_{2}(a q)+\mathrm{I}^{-}(a q) \rightleftharpoons
\mathrm{HgI}_{3}-(a q) \quad K_{3}=1.0 \times 10^{\circ}\)
\(\mathrm{HgI}_{3}^{-}(a q)+\mathrm{I}^{-}(a q) \rightleftharpoons
\mathrm{HgI}_{4}{ }^{2-}(a q) \quad K_{4}=1.0 \times 10^{\mathrm{s}}\)
A solution is prepared by dissolving \(0.088\) mole of
\(\mathrm{Hg}\left(\mathrm{NO}_{3}\right)_{2}\) and \(5.00\) mole of Nal in enough
water to make \(1.0 \mathrm{~L}\) of solution.
a, Calculate the equilibrium concentration of \(\left[\mathrm{HgI}_{4}{
}^{2-}\right]\).
b. Calculate the equilibrium concentration of \(\left[\mathrm{I}^{-}\right]\).
c. Calculate the equilibrium concentration of \(\left[\mathrm{Hg}^{2+}\right]\).