Chapter 9: Problem 86
Use the MO model to explain the bonding in \(\mathrm{BeH}_{2}\). When constructing the MO energy-level diagram, assume that the Be's \(1 s\) electrons are not involved in bond formation.
Chapter 9: Problem 86
Use the MO model to explain the bonding in \(\mathrm{BeH}_{2}\). When constructing the MO energy-level diagram, assume that the Be's \(1 s\) electrons are not involved in bond formation.
All the tools & learning materials you need for study success - in one app.
Get started for freeWhat modification to the molecular orbital model was made from the experimental evidence that \(\mathrm{B}_{2}\) is paramagnetic?
Use the localized electron model to describe the bonding in \(\mathrm{C}_{2} \mathrm{H}_{2}\) (exists as \(\mathrm{HCCH}\) ).
The diatomic molecule OH exists in the gas phase. The bond length and bond energy have been measured to be \(97.06 \mathrm{pm}\) and \(424.7 \mathrm{~kJ} / \mathrm{mol}\), respectively. Assume that the OH molecule is analogous to the HF molecule discussed in the chapter and that molecular orbitals result from the overlap of a lower-energy \(p_{z}\) orbital from oxygen with the higher- energy \(1 s\) orbital of hydrogen (the \(\mathrm{O}-\mathrm{H}\) bond lies along the \(z\) -axis). a. Which of the two molecular orbitals will have the greater hydrogen \(1 s\) character? b. Can the \(2 p_{x}\) orbital of oxygen form molecular orbitals with the \(1 s\) orbital of hydrogen? Explain. c. Knowing that only the \(2 p\) orbitals of oxygen will interact significantly with the \(1 s\) orbital of hydrogen, complete the molecular orbital energy- level diagram for OH. Place the correct number of electrons in the energy levels. d. Estimate the bond order for OH. e. Predict whether the bond order of \(\mathrm{OH}^{+}\) will be greater than, less than, or the same as that of \(\mathrm{OH}\). Explain.
Values of measured bond energies may vary greatly depending on the molecule studied. Consider the following reactions: $$ \begin{aligned} \mathrm{NCl}_{3}(g) & \longrightarrow \mathrm{NCl}_{2}(g)+\mathrm{Cl}(g) & \Delta H &=375 \mathrm{~kJ} / \mathrm{mol} \\ \mathrm{ONCl}(g) & \longrightarrow \mathrm{NO}(g)+\mathrm{Cl}(g) & \Delta H &=158 \mathrm{~kJ} / \mathrm{mol} \end{aligned} $$ Rationalize the difference in the values of \(\Delta H\) for these reactions, even though each reaction appears to involve only the breaking of one \(\mathrm{N}-\mathrm{Cl}\) bond. (Hint: Consider the bond order of the NO bond in ONCl and in NO.)
Why are \(d\) orbitals sometimes used to form hybrid orbitals? Which period of elements does not use \(d\) orbitals for hybridization? If necessary, which \(d\) orbitals \((3 d, 4 d, 5 d\), or \(6 d)\) would sulfur use to form hybrid orbitals requiring \(d\) atomic orbitals? Answer the same question for arsenic and for iodine.
What do you think about this solution?
We value your feedback to improve our textbook solutions.