Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Consider three molecules: \(\mathrm{A}, \mathrm{B}\), and \(\mathrm{C}\). Molecule A has a hybridization of \(s p^{3}\). Molecule B has two more effective pairs (electron pairs around the central atom) than molecule A. Molecule C consists of two \(\sigma\) bonds and two \(\pi\) bonds. Give the molecular structure, hybridization, bond angles, and an example for each molecule.

Short Answer

Expert verified
Molecule A: Tetrahedral structure, \(sp^3\) hybridization, bond angle of 109.5 degrees. Example: Methane (CH4). Molecule B: Octahedral structure, \(sp^3d^2\) hybridization, bond angle of 90 degrees. Example: Sulfur hexafluoride (SF6). Molecule C: Trigonal planar structure (one double bond and two single bonds), \(sp^2\) hybridization, bond angle of 120 degrees. Example: Ethene (C2H4).

Step by step solution

01

Molecule A: Hybridization \(sp^3\)

Molecular structure: Tetrahedral Hybridization: \(sp^3\) Bond angles: 109.5 degrees Example: Methane (CH4)
02

Molecule B: 2 more effective pairs than A

Since molecule A has a hybridization of \(sp^3\) with 4 effective pairs (electron pairs around the central atom), molecule B will have 6 effective pairs. This implies that molecule B has an octahedral structure. Molecular structure: Octahedral Hybridization: \(sp^3d^2\) Bond angles: 90 degrees Example: Sulfur hexafluoride (SF6)
03

Molecule C: 2 \(\sigma\) bonds and 2 \(\pi\) bonds

Having two \(\sigma\) bonds and two \(\pi\) bonds indicates that the molecule is a double bond. A compound with one double bond typically has a hybridization of \(sp^2\). Molecular structure: Trigonal planar (one double bond and two single bonds) Hybridization: \(sp^2\) Bond angles: 120 degrees Example: Ethene (C2H4)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

Key Concepts

These are the key concepts you need to understand to accurately answer the question.

Hybridization
Hybridization is an essential concept in chemistry that explains how atomic orbitals mix to form new hybrid orbitals. These hybrid orbitals can explain the shape and geometry of a molecule.
In the case of Molecule A from the exercise, it has an \( sp^3 \) hybridization. This means it combines one s orbital and three p orbitals to form four equivalent \( sp^3 \) hybrid orbitals. These orbitals arrange themselves in a tetrahedral geometry, which minimizes repulsion between the electron pairs.
For Molecule B, which has a hybridization of \( sp^3d^2 \), there are six orbitals involved. Here, one s orbital, three p orbitals, and two d orbitals mix, leading to an octahedral structure. Such structures are common in molecules that have more electron pairs surrounding their central atom.
Molecule C, with its \( sp^2 \) hybridization, combines one s orbital and two p orbitals. This results in three \( sp^2 \) hybrid orbitals with a trigonal planar arrangement. This is common in molecules with double bonds, as they involve both \( \sigma \) and \( \pi \) bonds.
Bond Angles
Bond angles are the angles formed between adjacent bonds of a molecule. Understanding them helps to visualize the molecule's geometry.
In Molecule A, with a tetrahedral structure, the bond angles are exactly 109.5 degrees. This specific angle is due to the four \( sp^3 \) hybrid orbitals being placed at the corners of a tetrahedron, providing a uniform distribution.
With Molecule B's octahedral configuration, the bond angles between adjacent pairs of electron pairs are 90 degrees. This is because the \( sp^3d^2 \) hybrid orbitals position themselves in a symmetrical octahedron, optimizing distance and minimizing repulsion.
For Molecule C, which is trigonal planar, the bond angles are approximately 120 degrees. This geometry arises from the \( sp^2 \) hybridization, ensuring the planar arrangement of electron pairs and involvement of \( \sigma \) and \( \pi \) bonds.
Electron Pairs
Electron pairs significantly influence a molecule's shape and hybridization. They repel each other, and this repulsion dictates the geometry.
In Molecule A, with a tetrahedral shape, there are four electron pairs around the central atom. These could be bonded pairs or lone pairs, creating the \( sp^3 \) hybrid formation.
Molecule B, on the other hand, features more complexity with six effective electron pairs. These pairs lead to an octahedral structure with \( sp^3d^2 \) hybridization, which is typical for molecules like sulfur hexafluoride (SF₆). The arrangement minimizes repulsion by orienting pairs at 90 degrees.
Molecule C contains distinctions as well. Here, the focus is on both \( \sigma \) bonds and \( \pi \) bonds, reflected in its three electron pair layout. Although less than Molecule A and B, the electron pair arrangement allows for \( sp^2 \) hybridization, ideal for forming double bonds.
Sigma and Pi Bonds
\( \sigma \) and \( \pi \) bonds are crucial for understanding bond types and strengths in molecules. These bonds arise from different types of atomic orbital overlaps.
\( \sigma \) bonds are single bonds formed by the direct overlap of orbitals. They're strong and possess head-on overlap, providing primary structural stability in molecules. Molecule C has two \( \sigma \) bonds, accounting for its formation of double bonds along with \( \pi \) bonds.
\( \pi \) bonds, by contrast, are formed when parallel p orbitals overlap side-by-side. They only occur in addition to \( \sigma \) bonds, meaning without an initial \( \sigma \) bond, a \( \pi \) bond cannot exist. In Molecule C, the two \( \pi \) bonds create the additional bond layers found in double bonds like those in ethene (Câ‚‚Hâ‚„). These bonds affect the rigidity and planarity of a molecule, often dictating reactivity and interaction potentials.

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Describe the bonding in the \(\mathrm{O}_{3}\) molecule and the \(\mathrm{NO}_{2}^{-}\) ion using the localized electron model. How would the molecular orbital model describe the \(\pi\) bonding in these two species?

The diatomic molecule OH exists in the gas phase. The bond length and bond energy have been measured to be \(97.06 \mathrm{pm}\) and \(424.7 \mathrm{~kJ} / \mathrm{mol}\), respectively. Assume that the OH molecule is analogous to the HF molecule discussed in the chapter and that molecular orbitals result from the overlap of a lower-energy \(p_{z}\) orbital from oxygen with the higher- energy \(1 s\) orbital of hydrogen (the \(\mathrm{O}-\mathrm{H}\) bond lies along the \(z\) -axis). a. Which of the two molecular orbitals will have the greater hydrogen \(1 s\) character? b. Can the \(2 p_{x}\) orbital of oxygen form molecular orbitals with the \(1 s\) orbital of hydrogen? Explain. c. Knowing that only the \(2 p\) orbitals of oxygen will interact significantly with the \(1 s\) orbital of hydrogen, complete the molecular orbital energy- level diagram for OH. Place the correct number of electrons in the energy levels. d. Estimate the bond order for OH. e. Predict whether the bond order of \(\mathrm{OH}^{+}\) will be greater than, less than, or the same as that of \(\mathrm{OH}\). Explain.

The \(\mathrm{N}_{2} \mathrm{O}\) molecule is linear and polar. a. On the basis of this experimental evidence, which arrangement, NNO or NON, is correct? Explain your answer. b. On the basis of your answer to part a, write the Lewis structure of \(\mathrm{N}_{2} \mathrm{O}\) (including resonance forms). Give the formal charge on each atom and the hybridization of the central atom. c. How would the multiple bonding in \(: \mathrm{N} \equiv \mathrm{N}-\mathrm{O}:\) be described in terms of orbitals?

Describe the bonding in the first excited state of \(\mathrm{N}_{2}\) (the one closest in energy to the ground state) using the molecular orbital model. What differences do you expect in the properties of the molecule in the ground state as compared to the first excited state? (An excited state of a molecule corresponds to an electron arrangement other than that giving the lowest possible energy.)

Using the molecular orbital model to describe the bonding in \(\mathrm{F}_{2}{ }^{+}\), \(\mathrm{F}_{2}\), and \(\mathrm{F}_{2}^{-}\), predict the bond orders and the relative bond lengths for these three species. How many unpaired electrons are present in each species?

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free