Chapter 9: Problem 43
Using molecular orbital theory, explain why the removal of one electron in \(\mathrm{O}_{2}\) strengthens bonding, while the removal of one electron in \(\mathrm{N}_{2}\) weakens bonding.
Chapter 9: Problem 43
Using molecular orbital theory, explain why the removal of one electron in \(\mathrm{O}_{2}\) strengthens bonding, while the removal of one electron in \(\mathrm{N}_{2}\) weakens bonding.
All the tools & learning materials you need for study success - in one app.
Get started for freeBond energy has been defined in the text as the amount of energy required to break a chemical bond, so we have come to think of the addition of energy as breaking bonds. However, in some cases the addition of energy can cause the formation of bonds. For example, in a sample of helium gas subjected to a high-energy source, some \(\mathrm{He}_{2}\) molecules exist momentarily and then dissociate. Use MO theory (and diagrams) to explain why \(\mathrm{He}_{2}\) molecules can come to exist and why they dissociate.
Use the localized electron model to describe the bonding in \(\mathrm{CCl}_{4}\).
The \(\mathrm{N}_{2} \mathrm{O}\) molecule is linear and polar. a. On the basis of this experimental evidence, which arrangement, NNO or NON, is correct? Explain your answer. b. On the basis of your answer to part a, write the Lewis structure of \(\mathrm{N}_{2} \mathrm{O}\) (including resonance forms). Give the formal charge on each atom and the hybridization of the central atom. c. How would the multiple bonding in \(: \mathrm{N} \equiv \mathrm{N}-\mathrm{O}:\) be described in terms of orbitals?
Carbon monoxide (CO) forms bonds to a variety of metals and metal ions. Its ability to bond to iron in hemoglobin is the reason that \(\mathrm{CO}\) is so toxic. The bond carbon monoxide forms to metals is through the carbon atom: \(\mathrm{M}-\mathrm{C} \equiv \mathrm{O}\) a. On the basis of electronegativities, would you expect the carbon atom or the oxygen atom to form bonds to metals? b. Assign formal charges to the atoms in CO. Which atom would you expect to bond to a metal on this basis? c. In the MO model, bonding MOs place more electron density near the more electronegative atom. (See the HF molecule in Figs. \(9.42\) and \(9.43 .\) Antibonding MOs place more electron density near the less electronegative atom in the diatomic molecule. Use the MO model to predict which atom of carbon monoxide should form bonds to metals.
Use the localized electron model to describe the bonding in \(\mathrm{C}_{2} \mathrm{H}_{2}\) (exists as \(\mathrm{HCCH}\) ).
What do you think about this solution?
We value your feedback to improve our textbook solutions.