Chapter 8: Problem 8
Would you expect the electronegativity of titanium to be the same in the species \(\mathrm{Ti}, \mathrm{Ti}^{2+}, \mathrm{Ti}^{3+}\), and \(\mathrm{Ti}^{4+} ?\) Explain.
Chapter 8: Problem 8
Would you expect the electronegativity of titanium to be the same in the species \(\mathrm{Ti}, \mathrm{Ti}^{2+}, \mathrm{Ti}^{3+}\), and \(\mathrm{Ti}^{4+} ?\) Explain.
All the tools & learning materials you need for study success - in one app.
Get started for freeNitrous oxide \(\left(\mathrm{N}_{2} \mathrm{O}\right)\) has three possible Lewis structures: Given the following bond lengths, $$ \begin{array}{llll} \mathrm{N}-\mathrm{N} & 167 \mathrm{pm} & \mathrm{N}=\mathrm{O} & 115 \mathrm{pm} \\ \mathrm{N}=\mathrm{N} & 120 \mathrm{pm} & \mathrm{N}-\mathrm{O} & 147 \mathrm{pm} \\ \mathrm{N} \equiv \mathrm{N} & 110 \mathrm{pm} & & \end{array} $$ rationalize the observations that the \(\mathrm{N}-\mathrm{N}\) bond length in \(\mathrm{N}_{2} \mathrm{O}\) is \(112 \mathrm{pm}\) and that the \(\mathrm{N}-\mathrm{O}\) bond length is \(119 \mathrm{pm}\). Assign formal charges to the resonance structures for \(\mathrm{N}_{2} \mathrm{O}\). Can you eliminate any of the resonance structures on the basis of formal charges? Is this consistent with observation?
A polyatomic ion is composed of \(\mathrm{C}, \mathrm{N}\), and an unknown element \(\mathrm{X} .\) The skeletal Lewis structure of this polyatomic ion is \([\mathrm{X}-\mathrm{C}-\mathrm{N}]^{-} .\) The ion \(\mathrm{X}^{2-}\) has an electron configuration of \([\mathrm{Ar}] 4 s^{2} 3 d^{10} 4 p^{6} .\) What is element \(\mathrm{X} ?\) Knowing the identity of \(\mathrm{X}\), complete the Lewis structure of the polyatomic ion, including all important resonance structures.
Write Lewis structures and predict the molecular structures of the following. (See Exercises 105 and 106 .) a. \(\mathrm{OCl}_{2}, \mathrm{KrF}_{2}, \mathrm{BeH}_{2}, \mathrm{SO}_{2}\) b. \(\mathrm{SO}_{3}, \mathrm{NF}_{3}, \mathrm{IF}_{3}\) c. \(\mathrm{CF}_{4}, \mathrm{SeF}_{4}, \mathrm{KrF}_{4}\) d. \(\mathrm{IF}_{5}, \mathrm{AsF}_{5}\) Which of these compounds are polar?
Describe the type of bonding that exists in the \(\mathrm{Cl}_{2}(g)\) molecule. How does this type of bonding differ from that found in the HCl( \(g\) ) molecule? How is it similar?
Which compound in each of the following pairs of ionic substances has the most exothermic lattice energy? Justify your answers. a. \(\mathrm{LiF}, \mathrm{CsF}\) b. NaBr, NaI c. \(\mathrm{BaCl}_{2}, \mathrm{BaO}\) d. \(\mathrm{Na}_{2} \mathrm{SO}_{4}, \mathrm{CaSO}_{4}\) e. \(\mathrm{KF}, \mathrm{K}_{2} \mathrm{O}\) f. \(\mathrm{Li}_{2} \mathrm{O}, \mathrm{Na}_{2} \mathrm{~S}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.