Chapter 8: Problem 60
Use the following data to estimate \(\Delta H\) for the reaction \(\mathrm{S}^{-}(g)+\) \(\mathrm{e}^{-} \rightarrow \mathrm{S}^{2-}(g)\). Include an estimate of uncertainty. $$ \begin{array}{|lcccc|} \hline & & \text { Lattice } & & \Delta H_{\text {sub }} \\ & \Delta \boldsymbol{H}_{\mathrm{t}}^{\circ} & \text { Energy } & \text { I.E. of } \mathbf{M} & \text { of M } \\ \hline \mathrm{Na}_{2} \mathrm{~S} & -365 & -2203 & 495 & 109 \\ \mathrm{~K}_{2} \mathrm{~S} & -381 & -2052 & 419 & 90 \\ \mathrm{Rb}_{2} \mathrm{~S} & -361 & -1949 & 409 & 82 \\ \mathrm{Cs}_{2} \mathrm{~S} & -360 & -1850 & 382 & 78 \\ \hline \end{array} $$ $$ \begin{aligned} \mathrm{S}(s) & \longrightarrow \mathrm{S}(g) & \Delta H &=227 \mathrm{~kJ} / \mathrm{mol} \\ \mathrm{S}(g)+\mathrm{e}^{-} & \longrightarrow \mathrm{S}^{-}(g) & \Delta H &=-200 \mathrm{~kJ} / \mathrm{mol} \end{aligned} $$ Assume that all values are known to \(\pm 1 \mathrm{~kJ} / \mathrm{mol}\).
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.