Chapter 7: Problem 99
Arrange the following groups of atoms in order of increasing size. a. \(\mathrm{Te}, \mathrm{S}, \mathrm{Se}\) b. \(\mathrm{K}, \mathrm{Br}, \mathrm{Ni}\) c. \(\mathrm{Ba}, \mathrm{Si}, \mathrm{F}\)
Chapter 7: Problem 99
Arrange the following groups of atoms in order of increasing size. a. \(\mathrm{Te}, \mathrm{S}, \mathrm{Se}\) b. \(\mathrm{K}, \mathrm{Br}, \mathrm{Ni}\) c. \(\mathrm{Ba}, \mathrm{Si}, \mathrm{F}\)
All the tools & learning materials you need for study success - in one app.
Get started for freeA particle has a velocity that is \(90 . \%\) of the speed of light. If the wavelength of the particle is \(1.5 \times 10^{-15} \mathrm{~m}\), calculate the mass of the particle.
Three elements have the electron configurations \(1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6}\), \(1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2}\), and \(1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{1}\). The first ionization energies of these elements (not in the same order) are \(0.419,0.735\), and \(1.527 \mathrm{MJ} / \mathrm{mol}\). The atomic radii are \(1.60,0.98\), and \(2.35 \AA\). Identify the three elements, and match the appropriate values of ionization energy and atomic radius to each configuration.
The successive ionization energies for an unknown element are \(I_{1}=896 \mathrm{~kJ} / \mathrm{mol}\) \(I_{2}=1752 \mathrm{~kJ} / \mathrm{mol}\) \(I_{3}=14,807 \mathrm{~kJ} / \mathrm{mol}\) \(I_{4}=17,948 \mathrm{~kJ} / \mathrm{mol}\) To which family in the periodic table does the unknown element most likely belong?
Arrange the following groups of atoms in order of increasing size. a. \(\mathrm{Rb}, \mathrm{Na}, \mathrm{Be}\) b. \(\mathrm{Sr}, \mathrm{Se}, \mathrm{Ne}\) c. \(\mathrm{Fe}, \mathrm{P}, \mathrm{O}\)
An ionic compound of potassium and oxygen has the empirical formula KO. Would you expect this compound to be potassium(II) oxide or potassium peroxide? Explain.
What do you think about this solution?
We value your feedback to improve our textbook solutions.