Chapter 7: Problem 82
Write the expected electron configurations for each of the following atoms: \(\mathrm{Cl}, \mathrm{Sb}, \mathrm{Sr}, \mathrm{W}, \mathrm{Pb}, \mathrm{Cf}\).
Chapter 7: Problem 82
Write the expected electron configurations for each of the following atoms: \(\mathrm{Cl}, \mathrm{Sb}, \mathrm{Sr}, \mathrm{W}, \mathrm{Pb}, \mathrm{Cf}\).
All the tools & learning materials you need for study success - in one app.
Get started for freeCesium was discovered in natural mineral waters in 1860 by R. W. Bunsen and G. R. Kirchhoff using the spectroscope they invented in \(1859 .\) The name came from the Latin caesius ("sky blue") because of the prominent blue line observed for this element at \(455.5 \mathrm{~nm} .\) Calculate the frequency and energy of a photon of this light.
An electron is excited from the \(n=1\) ground state to the \(n=3\) state in a hydrogen atom. Which of the following statements are true? Correct the false statements to make them true. a. It takes more energy to ionize (completely remove) the electron from \(n=3\) than from the ground state. b. The electron is farther from the nucleus on average in the \(n=3\) state than in the \(n=1\) state. c. The wavelength of light emitted if the electron drops from \(n=3\) to \(n=2\) will be shorter than the wavelength of light emitted if the electron falls from \(n=3\) to \(n=1\). d. The wavelength of light emitted when the electron returns to the ground state from \(n=3\) will be the same as the wavelength of light absorbed to go from \(n=1\) to \(n=3\). e. For \(n=3\), the electron is in the first excited state.
How many valence electrons do each of the following elements have, and what are the specific valence electrons for each element? a. \(\mathrm{Ca}\) b. \(\mathrm{O}\) c. element 117 d. In e. Ar f. \(\mathrm{Bi}\)
Calculate the wavelength of light emitted when each of the following transitions occur in the hydrogen atom. What type of electromagnetic radiation is emitted in each transition? a. \(n=3 \rightarrow n=2\) b. \(n=4 \rightarrow n=2\) c. \(n=2 \rightarrow n=1\)
Predict the atomic number of the next alkali metal after francium and give its ground-state electron configuration.
What do you think about this solution?
We value your feedback to improve our textbook solutions.