Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Assume that a hydrogen atom's electron has been excited to the \(n=5\) level. How many different wavelengths of light can be emitted as this excited atom loses energy?

Short Answer

Expert verified
A hydrogen atom's electron excited to the \(n=5\) level can lose energy by transitioning to lower energy levels (\(n=1\), \(n=2\), \(n=3\), and \(n=4\)). There are 4 possible transitions, and each will emit a photon with a different wavelength. Therefore, there are 4 different wavelengths of light that can be emitted as the atom loses energy.

Step by step solution

01

Identify the initial and final energy levels

Initially, the electron is in the n=5 energy level, and it can lose energy by transitioning to lower energy levels (n=1, n=2, n=3, and n=4).
02

Calculate the possible transitions

To find the total number of possible transitions, we can consider each lower energy level: 1. Transition from n=5 to n=4 2. Transition from n=5 to n=3 3. Transition from n=5 to n=2 4. Transition from n=5 to n=1 Each of these transitions will emit a photon with a different wavelength, so there are 4 different wavelengths possible.
03

Check for any additional transitions

It is essential to check if there are any other transitions involving intermediate energy levels. In this case, there are no additional transitions since all lower energy levels have been considered directly from n=5.
04

Answer the question

As calculated in Step 2, there are 4 different wavelengths of light that can be emitted when a hydrogen atom's electron transitions from the n=5 energy level to the lower energy levels (n=1, n=2, n=3, and n=4).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Which of the following sets of quantum numbers are not allowed? For each incorrect set, state why it is incorrect. a. \(n=3, \ell=3, m_{\ell}=0, m_{s}=-\frac{1}{2}\) b. \(n=4, \ell=3, m_{\ell}=2, m_{s}=-\frac{1}{2}\) c. \(n=4, \ell=1, m_{\ell}=1, m_{s}=+\frac{1}{2}\) d. \(n=2, \ell=1, m_{\ell}=-1, m_{s}=-1\) e. \(n=5, \ell=-4, m_{\ell}=2, m_{s}=+\frac{1}{2}\) f. \(n=3, \ell=1, m_{\ell}=2, m_{s}=-\frac{1}{2}\)

Identify the following elements. a. An excited state of this element has the electron configuration \(1 s^{2} 2 s^{2} 2 p^{5} 3 s^{1}\). b. The ground-state electron configuration is \([\mathrm{Ne}] 3 s^{2} 3 p^{4}\). c. An excited state of this element has the electron configuration \([\mathrm{Kr}] 5 s^{2} 4 d^{6} 5 p^{2} 6 s^{1}\) d. The ground-state electron configuration contains three unpaired \(6 p\) electrons.

A certain microwave oven delivers \(750 .\) watts \((\mathrm{J} / \mathrm{s})\) of power to a coffee cup containing \(50.0 \mathrm{~g}\) water at \(25.0^{\circ} \mathrm{C}\). If the wavelength of microwaves in the oven is \(9.75 \mathrm{~cm}\), how long does it take, and how many photons must be absorbed, to make the water boil? The specific heat capacity of water is \(4.18 \mathrm{~J} /{ }^{\circ} \mathrm{C} \cdot \mathrm{g}\) and assume only the water absorbs the energy of the microwaves.

Give the maximum number of electrons in an atom that can have these quantum numbers: a. \(n=4\) b. \(n=5, m_{\ell}=+1\) c. \(n=5, m_{s}=+\frac{1}{2}\) d. \(n=3, \ell=2\) e. \(n=2, \ell=1\)

The successive ionization energies for an unknown element are \(I_{1}=896 \mathrm{~kJ} / \mathrm{mol}\) \(I_{2}=1752 \mathrm{~kJ} / \mathrm{mol}\) \(I_{3}=14,807 \mathrm{~kJ} / \mathrm{mol}\) \(I_{4}=17,948 \mathrm{~kJ} / \mathrm{mol}\) To which family in the periodic table does the unknown element most likely belong?

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free