Chapter 7: Problem 169
From the information below, identify element \(\mathrm{X}\). a. The wavelength of the radio waves sent by an FM station broadcasting at \(97.1 \mathrm{MHz}\) is \(30.0\) million \(\left(3.00 \times 10^{7}\right)\) times greater than the wavelength corresponding to the energy difference between a particular excited state of the hydrogen atom and the ground state. b. Let \(V\) represent the principal quantum number for the valence shell of element \(X\). If an electron in the hydrogen atom falls from shell \(V\) to the inner shell corresponding to the excited state mentioned above in part a, the wavelength of light emitted is the same as the wavelength of an electron moving at a speed of \(570 . \mathrm{m} / \mathrm{s}\) c. The number of unpaired electrons for element \(\mathrm{X}\) in the ground state is the same as the maximum number of electrons in an atom that can have the quantum number designations \(n=2\), \(m_{\ell}=-1\), and \(m_{s}=-\frac{1}{2}\) d. Let \(A\) equal the charge of the stable ion that would form when the undiscovered element 120 forms ionic compounds. This value of \(A\) also represents the angular momentum quantum number for the subshell containing the unpaired electron(s) for element \(\mathrm{X}\).
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.