Chapter 7: Problem 126
Complete and balance the equations for the following reactions. a. \(\mathrm{Cs}(s)+\mathrm{H}_{2} \mathrm{O}(l) \rightarrow\) b. \(\mathrm{Na}(s)+\mathrm{Cl}_{2}(g) \rightarrow\)
Chapter 7: Problem 126
Complete and balance the equations for the following reactions. a. \(\mathrm{Cs}(s)+\mathrm{H}_{2} \mathrm{O}(l) \rightarrow\) b. \(\mathrm{Na}(s)+\mathrm{Cl}_{2}(g) \rightarrow\)
All the tools & learning materials you need for study success - in one app.
Get started for freeThree elements have the electron configurations \(1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6}\), \(1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2}\), and \(1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{1}\). The first ionization energies of these elements (not in the same order) are \(0.419,0.735\), and \(1.527 \mathrm{MJ} / \mathrm{mol}\). The atomic radii are \(1.60,0.98\), and \(2.35 \AA\). Identify the three elements, and match the appropriate values of ionization energy and atomic radius to each configuration.
Assume that a hydrogen atom's electron has been excited to the \(n=5\) level. How many different wavelengths of light can be emitted as this excited atom loses energy?
Using the Heisenberg uncertainty principle, calculate \(\Delta x\) for each of the following. a. an electron with \(\Delta v=0.100 \mathrm{~m} / \mathrm{s}\) b. a baseball (mass \(=145 \mathrm{~g}\) ) with \(\Delta v=0.100 \mathrm{~m} / \mathrm{s}\) c. How does the answer in part a compare with the size of a hydrogen atom? d. How does the answer in part b correspond to the size of a baseball?
The first-row transition metals from chromium through zinc all have some biologic function in the human body. How many unpaired electrons are present in each of these first-row transition metals in the ground state?
A certain microwave oven delivers \(750 .\) watts \((\mathrm{J} / \mathrm{s})\) of power to a coffee cup containing \(50.0 \mathrm{~g}\) water at \(25.0^{\circ} \mathrm{C}\). If the wavelength of microwaves in the oven is \(9.75 \mathrm{~cm}\), how long does it take, and how many photons must be absorbed, to make the water boil? The specific heat capacity of water is \(4.18 \mathrm{~J} /{ }^{\circ} \mathrm{C} \cdot \mathrm{g}\) and assume only the water absorbs the energy of the microwaves.
What do you think about this solution?
We value your feedback to improve our textbook solutions.