Chapter 7: Problem 12
In going across a row of the periodic table, electrons are added and ionization energy generally increases. In going down a column of the periodic table, electrons are also being added but ionization energy decreases. Explain.
Chapter 7: Problem 12
In going across a row of the periodic table, electrons are added and ionization energy generally increases. In going down a column of the periodic table, electrons are also being added but ionization energy decreases. Explain.
All the tools & learning materials you need for study success - in one app.
Get started for freeCarbon absorbs energy at a wavelength of \(150 . \mathrm{nm}\). The total amount of energy emitted by a carbon sample is \(1.98 \times 10^{5} \mathrm{~J}\). Calculate the number of carbon atoms present in the sample, assuming that each atom emits one photon.
Complete and balance the equations for the following reactions. a. \(\mathrm{Li}(s)+\mathrm{N}_{2}(g) \rightarrow\) b. \(\mathrm{Rb}(s)+\mathrm{S}(s) \rightarrow\)
Arrange the following groups of atoms in order of increasing size. a. \(\mathrm{Te}, \mathrm{S}, \mathrm{Se}\) b. \(\mathrm{K}, \mathrm{Br}, \mathrm{Ni}\) c. \(\mathrm{Ba}, \mathrm{Si}, \mathrm{F}\)
Human color vision is "produced" by the nervous system based on how three different cone receptors interact with photons of light in the eye. These three different types of cones interact with photons of different frequency light, as indicated in the following chart: $$ \begin{array}{|lc|} \hline \text { Cone Type } & \begin{array}{c} \text { Range of Light } \\ \text { Frequency Detected } \end{array} \\ \hline \mathrm{S} & 6.00-7.49 \times 10^{14} \mathrm{~s}^{-1} \\ \mathrm{M} & 4.76-6.62 \times 10^{14} \mathrm{~s}^{-1} \\ \mathrm{~L} & 4.28-6.00 \times 10^{14} \mathrm{~s}^{-1} \\ \hline \end{array} $$ What wavelength ranges (and corresponding colors) do the three types of cones detect?
Francium, Fr, is a radioactive element found in some uranium minerals and is formed as a result of the decay of actinium. a. What are the electron configurations of francium and its predicted most common ion? b. It has been estimated that at any one time, there is only one (1.0) ounce of francium on earth. Assuming this is true, what number of francium atoms exist on earth? c. The longest-lived isotope of francium is \({ }^{223} \mathrm{Fr}\). What is the total mass in grams of the neutrons in one atom of this isotope?
What do you think about this solution?
We value your feedback to improve our textbook solutions.