Chapter 6: Problem 99
The bombardier beetle uses an explosive discharge as a defensive measure. The chemical reaction involved is the oxidation of hydroquinone by hydrogen peroxide to produce quinone and water: $$ \mathrm{C}_{6} \mathrm{H}_{4}(\mathrm{OH})_{2}(a q)+\mathrm{H}_{2} \mathrm{O}_{2}(a q) \longrightarrow \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}_{2}(a q)+2 \mathrm{H}_{2} \mathrm{O}(l) $$ Calculate \(\Delta H\) for this reaction from the following data: \(\mathrm{C}_{6} \mathrm{H}_{4}(\mathrm{OH})_{2}(a q) \longrightarrow \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}_{2}(a q)+\mathrm{H}_{2}(g)\) $$ \begin{aligned} \Delta H &=+177.4 \mathrm{~kJ} \\ \mathrm{H}_{2}(g)+\mathrm{O}_{2}(g) \longrightarrow \mathrm{H}_{2} \mathrm{O}_{2}(a q) & \Delta H=-191.2 \mathrm{~kJ} \\ \mathrm{H}_{2}(g)+\frac{1}{2} \mathrm{O}_{2}(g) \longrightarrow \mathrm{H}_{2} \mathrm{O}(g) & \Delta H=-241.8 \mathrm{~kJ} \\ \mathrm{H}_{2} \mathrm{O}(g) \longrightarrow \mathrm{H}_{2} \mathrm{O}(l) & \Delta H=-43.8 \mathrm{~kJ} \end{aligned} $$
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.