Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Consider the following statements: "Heat is a form of energy, and energy is conserved. The heat lost by a system must be equal to the amount of heat gained by the surroundings. Therefore, heat is conserved." Indicate everything you think is correct in these statements. Indicate everything you think is incorrect. Correct the incorrect statements and explain.

Short Answer

Expert verified
The correct statements are: 1) Heat is a form of energy, and 2) Energy is conserved. The incorrect statement is: "The heat lost by a system must be equal to the amount of heat gained by the surroundings. Therefore, heat is conserved." The corrected statement should be: "The heat lost by a system must be equal to the amount of heat gained by the surroundings. Therefore, energy is conserved." Heat itself is not conserved, but it can be transformed into other forms of energy, and the total energy of the system is conserved according to the Law of Conservation of Energy.

Step by step solution

01

Identify the correct statements

The following parts of the given statements are correct: 1. "Heat is a form of energy." This is true because heat is defined as the transfer of energy due to a difference in temperature. 2. "Energy is conserved." This is a fundamental principle in physics, known as the Law of Conservation of Energy, which states that energy cannot be created or destroyed, but it can be transformed from one form to another.
02

Identify the incorrect statements

The following part of the given statements is incorrect: 1. "The heat lost by a system must be equal to the amount of heat gained by the surroundings. Therefore, heat is conserved." This statement is not completely false, but it is somewhat misleading.
03

Correct the incorrect statements and explain

We need to rephrase the incorrect statement to avoid confusion: "The heat lost by a system must be equal to the amount of heat gained by the surroundings. Therefore, energy is conserved." The original statement implied that heat is conserved, which might be interpreted as "heat cannot be transformed into other forms of energy," which is not true. Heat can be transformed into other forms of energy, such as mechanical work or electrical energy. As a result, heat itself is not conserved; rather, it is the total energy of the system that is conserved, according to the Law of Conservation of Energy.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

The specific heat capacity of silver is \(0.24 \mathrm{~J} /{ }^{\circ} \mathrm{C} \cdot \mathrm{g}\). a. Calculate the energy required to raise the temperature of \(150.0 \mathrm{~g}\) Ag from \(273 \mathrm{~K}\) to \(298 \mathrm{~K}\). b. Calculate the energy required to raise the temperature of \(1.0 \mathrm{~mol} \mathrm{Ag}\) by \(1.0^{\circ} \mathrm{C}\) (called the molar heat capacity of silver). c. It takes \(1.25 \mathrm{~kJ}\) of energy to heat a sample of pure silver from \(12.0^{\circ} \mathrm{C}\) to \(15.2^{\circ} \mathrm{C}\). Calculate the mass of the sample of silver.

Calculate \(\Delta H^{\circ}\) for each of the following reactions using the data in Appendix 4: $$ \begin{array}{c} 4 \mathrm{Na}(s)+\mathrm{O}_{2}(g) \longrightarrow 2 \mathrm{Na}_{2} \mathrm{O}(s) \\ 2 \mathrm{Na}(s)+2 \mathrm{H}_{2} \mathrm{O}(l) \longrightarrow 2 \mathrm{NaOH}(a q)+\mathrm{H}_{2}(g) \\ 2 \mathrm{Na}(s)+\mathrm{CO}_{2}(g) \longrightarrow \mathrm{Na}_{2} \mathrm{O}(s)+\mathrm{CO}(\mathrm{g}) \end{array} $$ Explain why a water or carbon dioxide fire extinguisher might not be effective in putting out a sodium fire.

Which has the greater kinetic energy, an object with a mass of 2.0 \(\mathrm{kg}\) and a velocity of \(1.0 \mathrm{~m} / \mathrm{s}\) or an object with a mass of \(1.0 \mathrm{~kg}\) and a velocity of \(2.0 \mathrm{~m} / \mathrm{s}\) ?

On Easter Sunday, April 3, 1983 , nitric acid spilled from a tank car near downtown Denver, Colorado. The spill was neutralized with sodium carbonate: \(2 \mathrm{HNO}_{3}(a q)+\mathrm{Na}_{2} \mathrm{CO}_{3}(s) \longrightarrow 2 \mathrm{NaNO}_{3}(a q)+\mathrm{H}_{2} \mathrm{O}(l)+\mathrm{CO}_{2}(g)\) a. Calculate \(\Delta H^{\circ}\) for this reaction. Approximately \(2.0 \times 10^{4}\) gal nitric acid was spilled. Assume that the acid was an aqueous solution containing \(70.0 \% \mathrm{HNO}_{3}\) by mass with a density of \(1.42 \mathrm{~g} / \mathrm{cm}^{3}\). What mass of sodium carbonate was required for complete neutralization of the spill, and what quantity of heat was evolved? \(\left(\Delta H_{\mathrm{f}}^{\circ}\right.\) for \(\mathrm{NaNO}_{3}(a q)=-467 \mathrm{~kJ} / \mathrm{mol}\) ) b. According to The Denver Post for April 4, 1983 , authorities feared that dangerous air pollution might occur during the neutralization. Considering the magnitude of \(\Delta H^{\circ}\), what was their major concern?

Assuming gasoline is pure \(\mathrm{C}_{8} \mathrm{H}_{1 \mathrm{~s}}(l)\), predict the signs of \(q\) and \(w\) for the process of combusting gasoline into \(\mathrm{CO}_{2}(g)\) and \(\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) .\)

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free