Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A gas absorbs \(45 \mathrm{~kJ}\) of heat and does \(29 \mathrm{~kJ}\) of work. Calculate \(\Delta E\).

Short Answer

Expert verified
The change in internal energy, ΔE, of the gas is \(16 \mathrm{~kJ}\).

Step by step solution

01

Recall the first law of thermodynamics

The first law of thermodynamics is given by the formula: \[ \Delta E = q - w \] where ΔE is the change in internal energy, q is the heat absorbed by the system, and w is the work done by the system.
02

Substitute given values into the formula

We are given the heat absorbed (q) as 45 kJ and the work done (w) as 29 kJ. Substitute these values into the formula: \[ \Delta E = 45 \mathrm{~kJ} - 29 \mathrm{~kJ} \]
03

Calculate the change in internal energy

Now, perform the subtraction to find the change in internal energy: \[ \Delta E = 16 \mathrm{~kJ} \] The change in internal energy, ΔE, of the gas is 16 kJ.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

On Easter Sunday, April 3, 1983 , nitric acid spilled from a tank car near downtown Denver, Colorado. The spill was neutralized with sodium carbonate: \(2 \mathrm{HNO}_{3}(a q)+\mathrm{Na}_{2} \mathrm{CO}_{3}(s) \longrightarrow 2 \mathrm{NaNO}_{3}(a q)+\mathrm{H}_{2} \mathrm{O}(l)+\mathrm{CO}_{2}(g)\) a. Calculate \(\Delta H^{\circ}\) for this reaction. Approximately \(2.0 \times 10^{4}\) gal nitric acid was spilled. Assume that the acid was an aqueous solution containing \(70.0 \% \mathrm{HNO}_{3}\) by mass with a density of \(1.42 \mathrm{~g} / \mathrm{cm}^{3}\). What mass of sodium carbonate was required for complete neutralization of the spill, and what quantity of heat was evolved? \(\left(\Delta H_{\mathrm{f}}^{\circ}\right.\) for \(\mathrm{NaNO}_{3}(a q)=-467 \mathrm{~kJ} / \mathrm{mol}\) ) b. According to The Denver Post for April 4, 1983 , authorities feared that dangerous air pollution might occur during the neutralization. Considering the magnitude of \(\Delta H^{\circ}\), what was their major concern?

Explain the advantages and disadvantages of hydrogen as an alternative fuel.

The enthalpy of combustion of \(\mathrm{CH}_{4}(\mathrm{~g})\) when \(\mathrm{H}_{2} \mathrm{O}(l)\) is formed is \(-891 \mathrm{~kJ} / \mathrm{mol}\) and the enthalpy of combustion of \(\mathrm{CH}_{4}(\mathrm{~g})\) when \(\mathrm{H}_{2} \mathrm{O}(\mathrm{g})\) is formed is \(-803 \mathrm{~kJ} / \mathrm{mol} .\) Use these data and Hess's law to determine the enthalpy of vaporization for water.

The standard enthalpy of formation of \(\mathrm{H}_{2} \mathrm{O}(l)\) at \(298 \mathrm{~K}\) is \(-285.8\) \(\mathrm{kJ} / \mathrm{mol} .\) Calculate the change in internal energy for the following process at \(298 \mathrm{~K}\) and 1 atm: $$ \mathrm{H}_{2} \mathrm{O}(l) \longrightarrow \mathrm{H}_{2}(g)+\frac{1}{2} \mathrm{O}_{2}(g) \quad \Delta E^{\circ}=? $$ (Hint: Using the ideal gas equation, derive an expression for work in terms of \(n, R\), and \(T\).)

Assuming gasoline is pure \(\mathrm{C}_{8} \mathrm{H}_{1 \mathrm{~s}}(l)\), predict the signs of \(q\) and \(w\) for the process of combusting gasoline into \(\mathrm{CO}_{2}(g)\) and \(\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) .\)

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free