Chapter 6: Problem 22
Explain the advantages and disadvantages of hydrogen as an alternative fuel.
Chapter 6: Problem 22
Explain the advantages and disadvantages of hydrogen as an alternative fuel.
All the tools & learning materials you need for study success - in one app.
Get started for freeThe Ostwald process for the commercial production of nitric acid from ammonia and oxygen involves the following steps: $$ \begin{aligned} 4 \mathrm{NH}_{3}(g)+5 \mathrm{O}_{2}(g) & \longrightarrow 4 \mathrm{NO}(g)+6 \mathrm{H}_{2} \mathrm{O}(g) \\ 2 \mathrm{NO}(g)+\mathrm{O}_{2}(g) & \longrightarrow 2 \mathrm{NO}_{2}(g) \\ 3 \mathrm{NO}_{2}(g)+\mathrm{H}_{2} \mathrm{O}(l) & \longrightarrow 2 \mathrm{HNO}_{3}(a q)+\mathrm{NO}(g) \end{aligned} $$ a. Use the values of \(\Delta H_{\mathrm{f}}^{\circ}\) in Appendix 4 to calculate the value of \(\Delta H^{\circ}\) for each of the preceding reactions. b. Write the overall equation for the production of nitric acid by the Ostwald process by combining the preceding equations. (Water is also a product.) Is the overall reaction exothermic or endothermic?
The standard enthalpy of combustion of ethene gas, \(\mathrm{C}_{2} \mathrm{H}_{4}(g)\), is \(-1411.1 \mathrm{~kJ} / \mathrm{mol}\) at \(298 \mathrm{~K}\). Given the following enthalpies of formation, calculate \(\Delta H_{\mathrm{f}}^{\circ}\) for \(\mathrm{C}_{2} \mathrm{H}_{4}(g)\). $$ \begin{array}{ll} \mathrm{CO}_{2}(g) & -393.5 \mathrm{~kJ} / \mathrm{mol} \\ \mathrm{H}_{2} \mathrm{O}(l) & -285.8 \mathrm{~kJ} / \mathrm{mol} \end{array} $$
Calculate the internal energy change for each of the following. a. One hundred (100.) joules of work is required to compress a gas. At the same time, the gas releases \(23 \mathrm{~J}\) of heat. b. A piston is compressed from a volume of \(8.30 \mathrm{~L}\) to \(2.80 \mathrm{~L}\) against a constant pressure of \(1.90 \mathrm{~atm} .\) In the process, there is a heat gain by the system of \(350 . \mathrm{J}\). c. A piston expands against \(1.00 \mathrm{~atm}\) of pressure from \(11.2 \mathrm{~L}\) to \(29.1 \mathrm{~L}\). In the process, \(1037 \mathrm{~J}\) of heat is absorbed.
For the process \(\mathrm{H}_{2} \mathrm{O}(l) \longrightarrow \mathrm{H}_{2} \mathrm{O}(g)\) at \(298 \mathrm{~K}\) and \(1.0 \mathrm{~atm}, \Delta H\) is more positive than \(\Delta E\) by \(2.5 \mathrm{~kJ} / \mathrm{mol}\). What does the \(2.5 \mathrm{~kJ} / \mathrm{mol}\) ouantity renresent?
Consider the following changes: a. \(\mathrm{N}_{2}(g) \longrightarrow \mathrm{N}_{2}(l)\) b. \(\mathrm{CO}(g)+\mathrm{H}_{2} \mathrm{O}(g) \longrightarrow \mathrm{H}_{2}(g)+\mathrm{CO}_{2}(g)\) c. \(\mathrm{Ca}_{3} \mathrm{P}_{2}(s)+6 \mathrm{H}_{2} \mathrm{O}(l) \longrightarrow 3 \mathrm{Ca}(\mathrm{OH})_{2}(s)+2 \mathrm{PH}_{3}(g)\) d. \(2 \mathrm{CH}_{3} \mathrm{OH}(l)+3 \mathrm{O}_{2}(g) \longrightarrow 2 \mathrm{CO}_{2}(g)+4 \mathrm{H}_{2} \mathrm{O}(l)\) e. \(\mathrm{I}_{2}(s) \longrightarrow \mathrm{I}_{2}(g)\) At constant temperature and pressure, in which of these changes is work done by the system on the surroundings? By the surroundings on the system? In which of them is no work done?
What do you think about this solution?
We value your feedback to improve our textbook solutions.